Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Zhang Bo, Zhang Zhi-Meng, Zhou Wei-Min. Quantum splitting of electron peaks in ultra-strong fields[J]. Matter and Radiation at Extremes, 2023, 8(5): 054003. doi: 10.1063/5.0157663
Citation: Zhang Bo, Zhang Zhi-Meng, Zhou Wei-Min. Quantum splitting of electron peaks in ultra-strong fields[J]. Matter and Radiation at Extremes, 2023, 8(5): 054003. doi: 10.1063/5.0157663

Quantum splitting of electron peaks in ultra-strong fields

doi: 10.1063/5.0157663
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zhangbolfrc@caep.cn
  • Received Date: 2023-05-09
  • Accepted Date: 2023-07-30
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • Effects of multiple nonlinear Compton scattering on electrons in ultra-strong fields are described using analytic formulas similar to those in the theory of multiple bremsstrahlung. Based on these analytic formulas, a new pure quantum effect of multiple nonlinear Compton scattering called quantum peak splitting is identified: the electron peak splits into two when the average number of nonlinear Compton scatterings per electron passes a threshold of 5.1 and is below 9. Quantum peak splitting stems from the discreteness of quantum radiation reaction, with one of the split peaks being formed by electrons emitting zero to three times and the other by electrons emitting four or more times. This effect provides a new mechanism for the formation of electron peaks, imposes a new beamstrahlung limit on future colliders, and corrects the picture of quantum radiation reaction. Experiments can be performed on lasers with intensities ≳1021 W/cm2, which are reachable on PW-scale facilities.
  • loading
  • [1]
    J. W. Yoon et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630 (2021).10.1364/optica.420520
    [2]
    S. Weber et al., “P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-beamlines,” Matter Radiat. Extremes 2, 149 (2017).10.1016/j.mre.2017.03.003
    [3]
    C. Danson et al., “Vulcan Petawatt—An ultra-high-intensity interaction facility,” Nucl. Fusion 44, S239 (2004).10.1088/0029-5515/44/12/s15
    [4]
    [5]
    Z. Guo et al., “Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system,” Opt. Express 26, 26776 (2018).10.1364/oe.26.026776
    [6]
    J. Zou et al., “Design and current progress of the Apollon 10 PW project,” High Power Laser Sci. Eng. 3, e2 (2015).10.1017/hpl.2014.41
    [7]
    S. Gales et al., “The extreme light infrastructure—Nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8
    [8]
    J. Bromage et al., “Technology development for ultraintense all-OPCPA systems,” High Power Laser Sci. Eng. 7, e4 (2019).10.1017/hpl.2018.64
    [9]
    E. Cartlidge, “The light fantastic,” Science 359, 382 (2018).10.1126/science.359.6374.382
    [10]
    G. Tiwari et al., “Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2,” Opt. Lett. 44, 2764 (2019).10.1364/ol.44.002764
    [11]
    X. Zeng et al., “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017).10.1364/ol.42.002014
    [12]
    V. Yanovsky et al., “Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).10.1364/oe.16.002109
    [13]
    A. S. Pirozhkov et al., “Approaching the diffraction-limited, bandwidth-limited petawatt,” Opt. Express 25, 20486 (2017).10.1364/oe.25.020486
    [14]
    J. W. Yoon et al., “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412 (2019).10.1364/oe.27.020412
    [15]
    C. N. Danson et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [16]
    M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon–photon and photon–plasma interactions,” Rev. Mod. Phys. 78, 591–640 (2006).10.1103/revmodphys.78.591
    [17]
    F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, “Fundamental processes of quantum electrodynamics in laser fields of relativistic power,” Rep. Prog. Phys. 72, 046401 (2009).10.1088/0034-4885/72/4/046401
    [18]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
    [19]
    G. Mourou and T. Tajima, “Summary of the IZEST science and aspiration,” Eur. Phys. J. Spec. Top. 223, 979 (2014).10.1140/epjst/e2014-02148-4
    [20]
    [21]
    A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Mod. Phys. 94, 045001 (2022).10.1103/revmodphys.94.045001
    [22]
    P. Zhang, S. S. Bulanov, D. Seipt, A. V. Arefiev, and A. G. R. Thomas, “Relativistic plasma physics in supercritial fields,” Phys. Plasmas 27, 050601 (2020).10.1063/1.5144449
    [23]
    A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, and G. Torgrimsson, “Advances in QED with intense background fields,” Phys. Rep. 1010, 1–138 (2023).10.1016/j.physrep.2023.01.003
    [24]
    J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).10.1103/physrev.82.664
    [25]
    J. Klein and B. Nigam, “Birefringence of the vacuum,” Phys. Rev. 135, B1279 (1964).10.1103/physrev.135.b1279
    [26]
    S. L. Adler, J. N. Bahcall, C. G. Callan, and M. N. Rosenbluth, “Photon splitting in a strong magnetic field,” Phys. Rev. Lett. 25, 1061 (1970).10.1103/physrevlett.25.1061
    [27]
    W. G. Unruh, “Notes on black-hole evaporation,” Phys. Rev. D 14, 870 (1976).10.1103/physrevd.14.870
    [28]
    F. Mackenroth and A. Di Piazza, “Nonlinear double compton scattering in the ultrarelativistic quantum regime,” Phys. Rev. Lett. 110, 070402 (2013).10.1103/physrevlett.110.070402
    [29]
    B. King, A. Di Piazza, and C. H. Keitel, “A matterless double slit,” Nat. Photonics 4, 92 (2010).10.1038/nphoton.2009.261
    [30]
    G. V. Dunne, H. Gies, and R. Schützhold, “Catalysis of Schwinger vacuum pair production,” Phys. Rev. D 80, 111301(R) (2009).10.1103/physrevd.80.111301
    [31]
    B. Zhang et al., “Vacuum radiation induced by time dependent electric field,” Phys. Lett. B 767, 431 (2017).10.1016/j.physletb.2017.01.076
    [32]
    [33]
    [34]
    [35]
    FCC collaboration, “FCC-ee: The lepton collider,” Eur. Phys. J. Spec. Top. 228, 261–623 (2019).10.1140/epjst/e2019-900045-4
    [36]
    V. Dinu, C. Harvey, A. Ilderton, and M. Marklund, “Quantum radiation reaction: From interference to incoherence,” Phys. Rev. Lett. 116, 044801 (2016).10.1103/physrevlett.116.044801
    [37]
    V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M. J. Hogan, A. Pukhov, L. O. Silva, and G. White, “Prospect of studying nonperturbative QED with beam–beam collisions,” Phys. Rev. Lett. 122, 190404 (2019).10.1103/physrevlett.122.190404
    [38]
    C. N. Harvey, A. Gonoskov, A. Ilderton, and M. Marklund, “Quantum quenching of radiation losses in short laser pulses,” Phys. Rev. Lett. 118, 105004 (2017).10.1103/physrevlett.118.105004
    [39]
    N. Neitz and A. Di Piazza, “Stochasticity effects in quantum radiation reaction,” Phys. Rev. Lett. 111, 054802 (2013).10.1103/physrevlett.111.054802
    [40]
    L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation–reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).10.1103/physrevlett.112.145003
    [41]
    A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113, 014801 (2014).10.1103/physrevlett.113.014801
    [42]
    A. I. Nikishov and V. I. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field,” Zh. Eksp. Teor. Fiz. 46, 776 (1964).
    [43]
    A. I. Nikishov and V. I. Ritus, “Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field,” Zh. Eksp. Teor. Fiz. 53, 1707 (1967).
    [44]
    V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/bf01120220
    [45]
    A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).10.1103/physrevlett.105.220403
    [46]
    H. Zhang, B. F. Shen, W. P. Wang, S. H. Zhai et al., “Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 119, 164801 (2017).10.1103/physrevlett.119.164801
    [47]
    F. Mackenroth et al., “Chirped-standing-wave acceleration of ions with intense lasers,” Phys. Rev. Lett. 117, 104801 (2016).10.1103/physrevlett.117.104801
    [48]
    S. Palaniyappan et al., “Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas,” Nat. Commun. 6, 10170 (2015).10.1038/ncomms10170
    [49]
    J. H. Bin, W. J. Ma et al., “Ion acceleration using relativistic pulse shaping in near-critical-density plasmas,” Phys. Rev. Lett. 115, 064801 (2015).10.1103/physrevlett.115.064801
    [50]
    X. F. Shen, A. Pukhov, and B. Qiao, “Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape,” Phys. Rev. X 11, 041002 (2021).10.1103/physrevx.11.041002
    [51]
    C. A. J. Palmer et al., “Monoenergetic proton beams accelerated by a radiation pressure driven shock,” Phys. Rev. Lett. 106, 014801 (2011).10.1103/physrevlett.106.014801
    [52]
    C. Scullion et al., “Polarization dependence of bulk ion acceleration from ultrathin foils irradiated by high-intensity ultrashort laser pulses,” Phys. Rev. Lett. 119, 054801 (2017).10.1103/physrevlett.119.054801
    [53]
    R. Matsui, Y. Fukuda, and Y. Kishimoto, “Quasimonoenergetic proton bunch acceleration driven by hemispherically converging collisionless shock in a hydrogen cluster coupled with relativistically induced transparency,” Phys. Rev. Lett. 122, 014804 (2019).10.1103/physrevlett.122.014804
    [54]
    G. Ambrosi et al. DAMPE collaboration, “Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons,” Nature 552, 63 (2017).10.1038/nature24475
    [55]
    [56]
    [57]
    [58]
    A. Abada et al., “FCC physics opportunities,” Eur. Phys. J. C 79, 474 (2019).10.1140/epjc/s10052-019-6904-3
    [59]
    K. K. Andersen et al. CERN (NA63), “Experimental investigations of synchrotron radiation at the onset of the quantum regime,” Phys. Rev. D 86, 072001 (2012).10.1103/physrevd.86.072001
    [60]
    A. Bogomyagkov, E. Levichev, and D. Shatilov, “Beam–beam effects investigation and parameters optimization for a circular e+e− collider at very high energies,” Phys. Rev. Spec. Top.-Accel. Beams 17, 041004 (2014).10.1103/physrevstab.17.041004
    [61]
    K. Yokoya and P. Chen, “Beam–beam phenomena in linear colliders,” in Frontiers of Particle Beams: Intensity Limitations, Lecture Notes in Physics, edited byM. Dienes, M. Month, and S. Turner (Springer, Berlin, Heidelberg, 1992), Vol. 400.
    [62]
    V. Shiltsev and F. Zimmermann, “Modern and future colliders,” Rev. Mod. Phys. 93, 015006 (2021).10.1103/revmodphys.93.015006
    [63]
    V. I. Telnov, “Restrictions on the energy and luminosity of e+e− storage rings due to Bremstrahlung,” Phys. Rev. Lett. 110, 114801 (2013).10.1103/physrevlett.110.114801
    [64]
    T. Erber, “High-energy electromagnetic conversion processes in intense magnetic fields,” Rev. Mod. Phys. 38, 626 (1966).10.1103/revmodphys.38.626
    [65]
    A. K. Harding and D. Lai, “Physics of strongly magnetized neutron stars,” Rep. Prog. Phys. 69, 2631 (2006).10.1088/0034-4885/69/9/r03
    [66]
    I. M. Ternov, “Synchrotron radiation,” Phys. Usp. 38, 409 (1995).10.1070/pu1995v038n04abeh000082
    [67]
    J. M. Cole et al., “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020
    [68]
    K. Poder et al., “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004
    [69]
    M. K. Khokonov, “Cascade processes of energy loss by emission of hard phonons,” J. Exp. Theor. Phys. 99, 690 (2004).10.1134/1.1826160
    [70]
    M. V. Bondarenco, “Multiphoton effects in coherent radiation spectra,” Phys. Rev. D 90, 013019 (2014).10.1103/physrevd.90.013019
    [71]
    S. M. Ross, Introduction to Probability Models, 11th ed. (Elsevier, Amsterdam, 2014).
    [72]
    B. Zhang, Z. M. Zhang, Z. G. Deng, W. Hong, J. Teng, S. K. He, W. M. Zhou, and Y. Q. Gu, “Effects of involved laser photons on radiation and electron–positron pair production in one coherence interval in ultra intense lasers,” Sci. Rep. 8, 16862 (2018).10.1038/s41598-018-35312-8
    [73]
    B. Zhang, Z. M. Zhang, Z. G. Deng, J. Teng, S. K. He, W. Hong, W. M. Zhou, and Y. Q. Gu, “Quantum mechanisms of electron and positron acceleration through nonlinear compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime,” Sci. Rep. 9, 18876 (2019).10.1038/s41598-019-55472-5
    [74]
    E. Esarey et al., “Theory and group velocity of ultrashort, tightly focused laser pulses,” J. Opt. Soc. Am. B 12, 1695–1703 (1995).10.1364/josab.12.001695
    [75]
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1975).
    [76]
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Elsevier, Singapore, 1975).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (44) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return