Citation: | Liu Yang, Zhang De-Hua, Xin Jing-Fei, Pu Yudong, Li Jun, Tao Tao, Sun Dejun, Yan Rui, Zheng Jian. Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation[J]. Matter and Radiation at Extremes, 2024, 9(1): 016603. doi: 10.1063/5.0157344 |
[1] |
Lord Rayleigh, Scientific Papers II (Cambridge University Press, Cambridge, 1900), p. 200.
|
[2] |
G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
|
[3] |
A. Burrows, “Supernova explosions in the universe,” Nature 403(6771), 727–733 (2000).10.1038/35001501
|
[4] |
V. N. Gamezo, A. M. Khokhlov, E. S. Oran, A. Y. Chtchelkanova, and R. O. Rosenberg, “Thermonuclear supernovae: Simulations of the deflagration stage and their implications,” Science 299(5603), 77–81 (2003).10.1126/science.1078129
|
[5] |
E. Hicks, “Rayleigh–Taylor unstable flames—Fast or faster?,” Astrophys. J. 803(2), 72 (2015).10.1088/0004-637x/803/2/72
|
[6] |
C. C. Kuranz, H.-S. Park, C. M. Huntington, A. R. Miles, B. A. Remington, T. Plewa, M. Trantham, H. Robey, D. Shvarts, A. Shimony et al., “How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants,” Nat. Commun. 9(1), 1564 (2018).10.1038/s41467-018-03548-7
|
[7] |
E. L. Blanton, T. Clarke, C. L. Sarazin, S. W. Randall, and B. R. McNamara, “Active galactic nucleus feedback in clusters of galaxies,” Proc. Natl. Acad. Sci. U. S. A. 107(16), 7174–7178 (2010).10.1073/pnas.0913904107
|
[8] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).10.1063/1.4934714
|
[9] |
A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey , “Burning plasma achieved in inertial fusion,” Nature 601(7894), 542–548 (2022).10.1038/s41586-021-04281-w
|
[10] |
H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129(7), 075001 (2022).10.1103/physrevlett.129.075001
|
[11] |
J. Lindl, Inertial Fusion Energy (SpringevVerlag, New York, 1998).
|
[12] |
J. H. Gardner and S. E. Bodner, “Wavelength scaling for reactor-size laser-fusion targets,” Phys. Rev. Lett. 47(16), 1137 (1981).10.1103/physrevlett.47.1137
|
[13] |
D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
|
[14] |
V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
|
[15] |
H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28(12), 3676–3682 (1985).10.1063/1.865099
|
[16] |
S. E. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761–764 (1974).10.1103/physrevlett.33.761
|
[17] |
R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
|
[18] |
M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2(5), 1007–1014 (1990).10.1063/1.859274
|
[19] |
J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1(5), 1379–1389 (1994).10.1063/1.870688
|
[20] |
J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2(11), 3933–4024 (1995).10.1063/1.871025
|
[21] |
S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, R. J. Wallace, and S. V. Weber, “Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets,” Phys. Rev. Lett. 78, 3318–3321 (1997).10.1103/physrevlett.78.3318
|
[22] |
J. Sanz, “Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73(20), 2700 (1994).10.1103/physrevlett.73.2700
|
[23] |
R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability,” Phys. Plasmas 2(10), 3844–3851 (1995).10.1063/1.871083
|
[24] |
V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with large Froude numbers,” Phys. Plasmas 3(4), 1402–1414 (1996).10.1063/1.871730
|
[25] |
V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3(12), 4665–4676 (1996).10.1063/1.872078
|
[26] |
R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts in inertial confinement fusion,” Phys. Plasmas 3(5), 2122–2128 (1996).10.1063/1.871664
|
[27] |
A. R. Piriz, J. Sanz, and L. F. Ibanez, “Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited,” Phys. Plasmas 4(4), 1117–1126 (1997).10.1063/1.872200
|
[28] |
C. M. Huntington, A. Shimony, M. Trantham, C. C. Kuranz, D. Shvarts, C. A. Di Stefano, F. W. Doss, R. P. Drake, K. A. Flippo, D. H. Kalantar et al., “Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock,” Phys. Plasmas 25(5), 052118 (2018).10.1063/1.5022179
|
[29] |
R. Betti and J. Sanz, “Bubble acceleration in the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 97(20), 205002 (2006).10.1103/physrevlett.97.205002
|
[30] |
R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, “Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability,” Phys. Plasmas 23(2), 022701 (2016).10.1063/1.4940917
|
[31] |
L. F. Wang, J. F. Wu, W. H. Ye, J. Q. Dong, Z. H. Fang, G. Jia, Z. Y. Xie, X. G. Huang, S. Z. Fu, S. Y. Zou et al., “Nonlinear ablative Rayleigh–Taylor growth experiments on Shenguang–II,” Phys. Plasmas 27(7), 072703 (2020).10.1063/1.5140525
|
[32] |
D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, “Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws,” Phys. Plasmas 8(6), 2883–2889 (2001).10.1063/1.1362529
|
[33] |
A. Casner, L. Masse, S. Liberatore, P. Loiseau, P. E. Masson-Laborde, L. Jacquet, D. Martinez, A. S. Moore, R. Seugling, S. Felker , “Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the national ignition facility,” Phys. Plasmas 22(5), 056302 (2015).10.1063/1.4918356
|
[34] |
D. A. Martinez, V. A. Smalyuk, J. O. Kane, A. Casner, S. Liberatore, and L. P. Masse, “Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF,” Phys. Rev. Lett. 114(21), 215004 (2015).10.1103/physrevlett.114.215004
|
[35] |
A. Casner, C. Mailliet, G. Rigon, S. F. Khan, D. Martinez, B. Albertazzi, T. Michel, T. Sano, Y. Sakawa, P. Tzeferacos et al., “From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes,” Nucl. Fusion 59(3), 032002 (2018).10.1088/1741-4326/aae598
|
[36] |
A. Casner, G. Rigon, B. Albertazzi, T. Michel, T. Pikuz, A. Faenov, P. Mabey, N. Ozaki, Y. Sakawa, T. Sano et al., “Turbulent hydrodynamics experiments in high energy density plasmas: Scientific case and preliminary results of the turboHEDP project,” High Power Laser Sci. Eng. 6, e44 (2018).10.1017/hpl.2018.34
|
[37] |
H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121(18), 185002 (2018).10.1103/physrevlett.121.185002
|
[38] |
H. Zhang, R. Betti, R. Yan, and H. Aluie, “Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion,” Phys. Plasmas 27(12), 122701 (2020).10.1063/5.0023541
|
[39] |
L. Ceurvorst, R. Betti, A. Casner, V. Gopalaswamy, A. Bose, S. X. Hu, E. M. Campbell, S. P. Regan, C. A. McCoy, M. Karasik et al., “Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion,” Phys. Rev. E 101(6), 063207 (2020).10.1103/physreve.101.063207
|
[40] |
M. Karasik, J. Oh, S. P. Obenschain, A. J. Schmitt, Y. Aglitskiy, and C. Stoeckl, “Order-of-magnitude laser imprint reduction using pre-expanded high-Z coatings on targets driven by a third harmonic Nd:glass laser,” Phys. Plasmas 28(3), 032710 (2021).10.1063/5.0042454
|
[41] |
T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Phase conversion of lasers with low-loss distributed phase plates,” in Laser Coherence Control: Technology and Applications (International Society for Optics and Photonics, 1993), Vol. 1870, pp. 95–104.
|
[42] |
Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21(20), 1703–1705 (1996).10.1364/ol.21.001703
|
[43] |
K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuda, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103(3-4), 185–188 (1993).10.1016/0030-4018(93)90441-7
|
[44] | |
[45] |
S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).10.1063/1.344101
|
[46] |
S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).10.1063/1.873501
|
[47] |
J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14(7), 1664–1671 (1997).10.1364/josab.14.001664
|
[48] |
M. Hohenberger, A. Shvydky, J. A. Marozas, G. Fiksel, M. J. Bonino, D. Canning, T. J. B. Collins, C. Dorrer, T. J. Kessler, B. E. Kruschwitz , “Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion,” Phys. Plasmas 23(9), 092702 (2016).10.1063/1.4962185
|
[49] |
R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).10.1016/j.optlaseng.2016.04.015
|
[50] |
L. Spitzer, Jr. and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89(5), 977 (1953).10.1103/physrev.89.977
|
[51] |
G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5(3), 506–517 (1968).10.1137/0705041
|
[52] |
J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (John Wiley, 1982).
|
[53] |
B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J. Suppl. Ser. 131(1), 273 (2000).10.1086/317361
|
[54] |
G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126(1), 202–228 (1996).10.1006/jcph.1996.0130
|
[55] |
J. Xin, R. Yan, Z.-H. Wan, D.-J. Sun, J. Zheng, H. Zhang, H. Aluie, and R. Betti, “Two mode coupling of the ablative Rayleigh-Taylor instabilities,” Phys. Plasmas 26(3), 032703 (2019).10.1063/1.5070103
|
[56] |
H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97(1), 011203 (2018).10.1103/physreve.97.011203
|
[57] |
J. Y. Fu, H. S. Zhang, H. B. Cai, and S. P. Zhu, “Self-similar bubble-front evolutions of ablative Rayleigh–Taylor instability seeded by localized perturbations,” Phys. Plasmas 30(2), 022701 (2023).10.1063/5.0132063
|
[58] |
J. Li, R. Yan, B. Zhao, J. Zheng, H. Zhang, and X. Lu, “Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport,” Matter Radiat. Extremes 7(5), 055902 (2022).10.1063/5.0088058
|
[59] |
D. Zhang, J. Li, J. Xin, R. Yan, Z. Wan, H. Zhang, and J. Zheng, “Self-generated magnetic field in ablative Rayleigh–Taylor instability,” Phys. Plasmas 29(7), 072702 (2022).10.1063/5.0092234
|
[60] |
P. W. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the national ignition facility,” Phys. Plasmas 8(5), 2315–2322 (2001).10.1063/1.1350571
|
[61] |
E. M. Campbell and W. J. Hogan, “The National Ignition Facility - applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41(12B), B39 (1999).10.1088/0741-3335/41/12b/303
|
[62] |
D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).10.1103/physrevlett.68.2774
|