Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Liu Yang, Zhang De-Hua, Xin Jing-Fei, Pu Yudong, Li Jun, Tao Tao, Sun Dejun, Yan Rui, Zheng Jian. Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation[J]. Matter and Radiation at Extremes, 2024, 9(1): 016603. doi: 10.1063/5.0157344
Citation: Liu Yang, Zhang De-Hua, Xin Jing-Fei, Pu Yudong, Li Jun, Tao Tao, Sun Dejun, Yan Rui, Zheng Jian. Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation[J]. Matter and Radiation at Extremes, 2024, 9(1): 016603. doi: 10.1063/5.0157344

Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation

doi: 10.1063/5.0157344
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: ruiyan@ustc.edu.cn
  • Received Date: 2023-05-07
  • Accepted Date: 2023-09-17
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • The evolution of ablative Rayleigh–Taylor instability (ARTI) induced by single-mode stationary and time-varying perturbations in heat flux is studied numerically in two dimensions. Compared with the stationary case, time-varying heat-flux perturbation mitigates ARTI growth because of the enhanced thermal smoothing induced by the wave-like traveling heat flux. A resonance is found to form when the phase velocity of the heat-flux perturbation matches the average sound speed in the ablation region. In the resonant regime, the coherent density and temperature fluctuations enhance the electron thermal conduction in the ablation region and lead to larger ablation pressure and effective acceleration, which consequently yield higher linear growth rate and saturated bubble velocity. The enhanced effective acceleration offers increased implosion velocity but can also compromise the integrity of inertial confinement fusion shells by causing faster ARTI growth.
  • loading
  • [1]
    Lord Rayleigh, Scientific Papers II (Cambridge University Press, Cambridge, 1900), p. 200.
    [2]
    G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
    [3]
    A. Burrows, “Supernova explosions in the universe,” Nature 403(6771), 727–733 (2000).10.1038/35001501
    [4]
    V. N. Gamezo, A. M. Khokhlov, E. S. Oran, A. Y. Chtchelkanova, and R. O. Rosenberg, “Thermonuclear supernovae: Simulations of the deflagration stage and their implications,” Science 299(5603), 77–81 (2003).10.1126/science.1078129
    [5]
    E. Hicks, “Rayleigh–Taylor unstable flames—Fast or faster?,” Astrophys. J. 803(2), 72 (2015).10.1088/0004-637x/803/2/72
    [6]
    C. C. Kuranz, H.-S. Park, C. M. Huntington, A. R. Miles, B. A. Remington, T. Plewa, M. Trantham, H. Robey, D. Shvarts, A. Shimony et al., “How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants,” Nat. Commun. 9(1), 1564 (2018).10.1038/s41467-018-03548-7
    [7]
    E. L. Blanton, T. Clarke, C. L. Sarazin, S. W. Randall, and B. R. McNamara, “Active galactic nucleus feedback in clusters of galaxies,” Proc. Natl. Acad. Sci. U. S. A. 107(16), 7174–7178 (2010).10.1073/pnas.0913904107
    [8]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).10.1063/1.4934714
    [9]
    A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey , “Burning plasma achieved in inertial fusion,” Nature 601(7894), 542–548 (2022).10.1038/s41586-021-04281-w
    [10]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129(7), 075001 (2022).10.1103/physrevlett.129.075001
    [11]
    J. Lindl, Inertial Fusion Energy (SpringevVerlag, New York, 1998).
    [12]
    J. H. Gardner and S. E. Bodner, “Wavelength scaling for reactor-size laser-fusion targets,” Phys. Rev. Lett. 47(16), 1137 (1981).10.1103/physrevlett.47.1137
    [13]
    D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
    [14]
    V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
    [15]
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28(12), 3676–3682 (1985).10.1063/1.865099
    [16]
    S. E. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761–764 (1974).10.1103/physrevlett.33.761
    [17]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
    [18]
    M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2(5), 1007–1014 (1990).10.1063/1.859274
    [19]
    J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1(5), 1379–1389 (1994).10.1063/1.870688
    [20]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2(11), 3933–4024 (1995).10.1063/1.871025
    [21]
    S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, R. J. Wallace, and S. V. Weber, “Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets,” Phys. Rev. Lett. 78, 3318–3321 (1997).10.1103/physrevlett.78.3318
    [22]
    J. Sanz, “Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73(20), 2700 (1994).10.1103/physrevlett.73.2700
    [23]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability,” Phys. Plasmas 2(10), 3844–3851 (1995).10.1063/1.871083
    [24]
    V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with large Froude numbers,” Phys. Plasmas 3(4), 1402–1414 (1996).10.1063/1.871730
    [25]
    V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3(12), 4665–4676 (1996).10.1063/1.872078
    [26]
    R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts in inertial confinement fusion,” Phys. Plasmas 3(5), 2122–2128 (1996).10.1063/1.871664
    [27]
    A. R. Piriz, J. Sanz, and L. F. Ibanez, “Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited,” Phys. Plasmas 4(4), 1117–1126 (1997).10.1063/1.872200
    [28]
    C. M. Huntington, A. Shimony, M. Trantham, C. C. Kuranz, D. Shvarts, C. A. Di Stefano, F. W. Doss, R. P. Drake, K. A. Flippo, D. H. Kalantar et al., “Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock,” Phys. Plasmas 25(5), 052118 (2018).10.1063/1.5022179
    [29]
    R. Betti and J. Sanz, “Bubble acceleration in the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 97(20), 205002 (2006).10.1103/physrevlett.97.205002
    [30]
    R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, “Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability,” Phys. Plasmas 23(2), 022701 (2016).10.1063/1.4940917
    [31]
    L. F. Wang, J. F. Wu, W. H. Ye, J. Q. Dong, Z. H. Fang, G. Jia, Z. Y. Xie, X. G. Huang, S. Z. Fu, S. Y. Zou et al., “Nonlinear ablative Rayleigh–Taylor growth experiments on Shenguang–II,” Phys. Plasmas 27(7), 072703 (2020).10.1063/1.5140525
    [32]
    D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, “Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws,” Phys. Plasmas 8(6), 2883–2889 (2001).10.1063/1.1362529
    [33]
    A. Casner, L. Masse, S. Liberatore, P. Loiseau, P. E. Masson-Laborde, L. Jacquet, D. Martinez, A. S. Moore, R. Seugling, S. Felker , “Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the national ignition facility,” Phys. Plasmas 22(5), 056302 (2015).10.1063/1.4918356
    [34]
    D. A. Martinez, V. A. Smalyuk, J. O. Kane, A. Casner, S. Liberatore, and L. P. Masse, “Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF,” Phys. Rev. Lett. 114(21), 215004 (2015).10.1103/physrevlett.114.215004
    [35]
    A. Casner, C. Mailliet, G. Rigon, S. F. Khan, D. Martinez, B. Albertazzi, T. Michel, T. Sano, Y. Sakawa, P. Tzeferacos et al., “From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes,” Nucl. Fusion 59(3), 032002 (2018).10.1088/1741-4326/aae598
    [36]
    A. Casner, G. Rigon, B. Albertazzi, T. Michel, T. Pikuz, A. Faenov, P. Mabey, N. Ozaki, Y. Sakawa, T. Sano et al., “Turbulent hydrodynamics experiments in high energy density plasmas: Scientific case and preliminary results of the turboHEDP project,” High Power Laser Sci. Eng. 6, e44 (2018).10.1017/hpl.2018.34
    [37]
    H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121(18), 185002 (2018).10.1103/physrevlett.121.185002
    [38]
    H. Zhang, R. Betti, R. Yan, and H. Aluie, “Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion,” Phys. Plasmas 27(12), 122701 (2020).10.1063/5.0023541
    [39]
    L. Ceurvorst, R. Betti, A. Casner, V. Gopalaswamy, A. Bose, S. X. Hu, E. M. Campbell, S. P. Regan, C. A. McCoy, M. Karasik et al., “Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion,” Phys. Rev. E 101(6), 063207 (2020).10.1103/physreve.101.063207
    [40]
    M. Karasik, J. Oh, S. P. Obenschain, A. J. Schmitt, Y. Aglitskiy, and C. Stoeckl, “Order-of-magnitude laser imprint reduction using pre-expanded high-Z coatings on targets driven by a third harmonic Nd:glass laser,” Phys. Plasmas 28(3), 032710 (2021).10.1063/5.0042454
    [41]
    T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Phase conversion of lasers with low-loss distributed phase plates,” in Laser Coherence Control: Technology and Applications (International Society for Optics and Photonics, 1993), Vol. 1870, pp. 95–104.
    [42]
    Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21(20), 1703–1705 (1996).10.1364/ol.21.001703
    [43]
    K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuda, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103(3-4), 185–188 (1993).10.1016/0030-4018(93)90441-7
    [44]
    [45]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).10.1063/1.344101
    [46]
    S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).10.1063/1.873501
    [47]
    J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14(7), 1664–1671 (1997).10.1364/josab.14.001664
    [48]
    M. Hohenberger, A. Shvydky, J. A. Marozas, G. Fiksel, M. J. Bonino, D. Canning, T. J. B. Collins, C. Dorrer, T. J. Kessler, B. E. Kruschwitz , “Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion,” Phys. Plasmas 23(9), 092702 (2016).10.1063/1.4962185
    [49]
    R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).10.1016/j.optlaseng.2016.04.015
    [50]
    L. Spitzer, Jr. and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89(5), 977 (1953).10.1103/physrev.89.977
    [51]
    G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5(3), 506–517 (1968).10.1137/0705041
    [52]
    J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (John Wiley, 1982).
    [53]
    B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J. Suppl. Ser. 131(1), 273 (2000).10.1086/317361
    [54]
    G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126(1), 202–228 (1996).10.1006/jcph.1996.0130
    [55]
    J. Xin, R. Yan, Z.-H. Wan, D.-J. Sun, J. Zheng, H. Zhang, H. Aluie, and R. Betti, “Two mode coupling of the ablative Rayleigh-Taylor instabilities,” Phys. Plasmas 26(3), 032703 (2019).10.1063/1.5070103
    [56]
    H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97(1), 011203 (2018).10.1103/physreve.97.011203
    [57]
    J. Y. Fu, H. S. Zhang, H. B. Cai, and S. P. Zhu, “Self-similar bubble-front evolutions of ablative Rayleigh–Taylor instability seeded by localized perturbations,” Phys. Plasmas 30(2), 022701 (2023).10.1063/5.0132063
    [58]
    J. Li, R. Yan, B. Zhao, J. Zheng, H. Zhang, and X. Lu, “Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport,” Matter Radiat. Extremes 7(5), 055902 (2022).10.1063/5.0088058
    [59]
    D. Zhang, J. Li, J. Xin, R. Yan, Z. Wan, H. Zhang, and J. Zheng, “Self-generated magnetic field in ablative Rayleigh–Taylor instability,” Phys. Plasmas 29(7), 072702 (2022).10.1063/5.0092234
    [60]
    P. W. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the national ignition facility,” Phys. Plasmas 8(5), 2315–2322 (2001).10.1063/1.1350571
    [61]
    E. M. Campbell and W. J. Hogan, “The National Ignition Facility - applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41(12B), B39 (1999).10.1088/0741-3335/41/12b/303
    [62]
    D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).10.1103/physrevlett.68.2774
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (39) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return