Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Xie Hui, Wang Hong, Qin Fang, Han Wei, Wang Suxin, Wang Youchun, Tian Fubo, Duan Defang. A fresh class of superconducting and hard pentaborides[J]. Matter and Radiation at Extremes, 2023, 8(5): 058404. doi: 10.1063/5.0157250
Citation: Xie Hui, Wang Hong, Qin Fang, Han Wei, Wang Suxin, Wang Youchun, Tian Fubo, Duan Defang. A fresh class of superconducting and hard pentaborides[J]. Matter and Radiation at Extremes, 2023, 8(5): 058404. doi: 10.1063/5.0157250

A fresh class of superconducting and hard pentaborides

doi: 10.1063/5.0157250
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: huixie@hbun.edu.cn; wangyouchun@lyu.edu.cn; and duandf@jlu.edu.cn
  • Received Date: 2023-05-06
  • Accepted Date: 2023-08-10
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions, numerous studies have been conducted with the aim of developing superconducting materials with favorable mechanical properties using boron-rich compounds. In this paper, first-principles calculations reveal the existence of an unprecedented family of tetragonal pentaborides MB5 (M = Na, K, Rb, Ca, Sr, Ba, Sc, and Y), comprising B20 cages and centered metal atoms acting as stabilizers and electron donors to the boron sublattice. These compounds exhibit both superconductivity and high hardness, with the maximum superconducting transition temperature Tc of 18.6 K being achieved in RbB5 and the peak Vickers hardness Hv of 35.1 GPa being achieved in KB5 at 1 atm. The combination of these properties is particularly evident in KB5, RbB5, and BaB5, with Tc values of ∼14.7, 18.6, and 16.3 K and Hv values of ∼35.1, 32.4, and 33.8 GPa, respectively. The results presented here reveal that pentaborides can provide a framework for exploring and designing novel superconducting materials with favorable hardness at achievable pressures and even under ambient conditions.
  • loading
  • [1]
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410, 63–64 (2001).10.1038/35065039
    [2]
    D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, “Pressure-induced decomposition of solid hydrogen sulfide,” Phys. Rev. B 91, 180502 (2015).10.1103/physrevb.91.180502
    [3]
    D. Duan, Y. Liu, Y. Ma, Z. Shao, B. Liu, and T. Cui, “Structure and superconductivity of hydrides at high pressures,” Natl. Sci. Rev. 4, 121–135 (2016).10.1093/nsr/nww029
    [4]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
    [5]
    H. Xie, D. Duan, Z. Shao, H. Song, Y. Wang, X. Xiao, D. Li, F. Tian, B. Liu, and T. Cui, “High-temperature superconductivity in ternary clathrate YCaH12 under high pressures,” J. Phys.: Condens. Matter 31, 245404 (2019).10.1088/1361-648x/ab09b4
    [6]
    H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
    [7]
    Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/physrevlett.128.047001
    [8]
    S. Lu, H. Liu, I. I. Naumov, S. Meng, Y. Li, J. S. Tse, B. Yang, and R. J. Hemley, “Superconductivity in dense carbon-based materials,” Phys. Rev. B 93, 104509 (2016).10.1103/physrevb.93.104509
    [9]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [10]
    Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, “Synthesis and stability of lanthanum superhydrides,” Angew. Chem., Int. Ed. 57, 688–692 (2018).10.1002/anie.201709970
    [11]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
    [12]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
    [13]
    M. A. G. Aranda, “Crystal structures of copper-based high-Tc superconductors,” Adv. Mater. 6, 905–921 (1994).10.1002/adma.19940061203
    [14]
    P. Dai, “Antiferromagnetic order and spin dynamics in iron-based superconductors,” Rev. Mod. Phys. 87, 855–896 (2015).10.1103/revmodphys.87.855
    [15]
    R. B. Kaner, J. J. Gilman, and S. H. Tolbert, “Designing superhard materials,” Science 308, 1268–1269 (2005).10.1126/science.1109830
    [16]
    G. Akopov, M. T. Yeung, and R. B. Kaner, “Rediscovering the crystal chemistry of borides,” Adv. Mater. 29, 1604506 (2017).10.1002/adma.201604506
    [17]
    Y. Xu, L. Zhang, T. Cui, Y. Li, Y. Xie, W. Yu, Y. Ma, and G. Zou, “First-principles study of the lattice dynamics, thermodynamic properties and electron-phonon coupling of YB6,” Phys. Rev. B 76, 214103 (2007).10.1103/physrevb.76.214103
    [18]
    M. M. Davari Esfahani, Q. Zhu, H. Dong, A. R. Oganov, S. Wang, M. S. Rakitin, and X. F. Zhou, “Novel magnesium borides and their superconductivity,” Phys. Chem. Chem. Phys. 19, 14486–14494 (2017).10.1039/c7cp00840f
    [19]
    X. Liang, A. Bergara, Y. Xie, L. Wang, R. Sun, Y. Gao, X.-F. Zhou, B. Xu, J. He, D. Yu, G. Gao, and Y. Tian, “Prediction of superconductivity in pressure-induced new silicon boride phases,” Phys. Rev. B 101, 014112 (2020).10.1103/physrevb.101.014112
    [20]
    Z.-F. Ouyang, X.-W. Yan, and M. Gao, “Electronic structure, phonons, and high-temperature phonon-mediated superconductivity in lithium-intercalated diamond-like boron compounds,” Appl. Phys. Express 13, 083003 (2020).10.35848/1882-0786/aba31f
    [21]
    Y. Liang, M. Xu, S. Lin, X. Yuan, Z. Qu, J. Hao, and Y. Li, “Pressure-induced boron clathrates with ambient-pressure superconductivity,” J. Mater. Chem. C 9, 13782–13788 (2021).10.1039/d1tc03419g
    [22]
    L. Ma, X. Yang, G. Liu, H. Liu, G. Yang, H. Wang, J. Cai, M. Zhou, and H. Wang, “Design and synthesis of clathrate LaB8 with superconductivity,” Phys. Rev. B 104, 174112 (2021).10.1103/physrevb.104.174112
    [23]
    J. Du, X. Li, and F. Peng, “Pressure-induced evolution of structures and promising superconductivity of ScB6,” Phys. Chem. Chem. Phys. 24, 10079–10084 (2022).10.1039/d2cp00711h
    [24]
    S. Han, L. Yu, Y. Liu, B. Zhao, C. Wang, X. Chen, Y. Zhang, R. Yu, and X. Liu, “Clathrate‐like alkali and alkaline‐earth metal borides: A new family of superconductors with superior hardness,” Adv. Funct. Mater. 33, 2213377 (2023).10.1002/adfm.202213377
    [25]
    H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, G. Z. Ren, W. L. Guo, X. Q. Fu, G. T. Zou, Z. A. Ren, G. C. Che, and Z. X. Zhao, “Superhard MgB2 bulk material prepared by high-pressure sintering,” J. Phys.: Condens. Matter 14, 11181 (2002).10.1088/0953-8984/14/44/449
    [26]
    S. Wei, D. Li, Y. Lv, Z. Liu, F. Tian, D. Duan, B. Liu, and T. Cui, “Strong covalent boron bonding induced extreme hardness of VB3,” J. Alloys Compd. 688, 1101–1107 (2016).10.1016/j.jallcom.2016.07.102
    [27]
    L. P. Ding, Y. H. Tiandong, P. Shao, Y. Tang, Z. L. Zhao, and H. Lu, “Crystal structures, phase stabilities, electronic properties, and hardness of yttrium borides: New insight from first-principles calculations,” J. Phys. Chem. Lett. 12, 5423–5429 (2021).10.1021/acs.jpclett.1c01300
    [28]
    K. Zhao, Q. Wang, W. Li, Q. Yang, H. Yu, F. Han, H. Liu, and S. Zhang, “Orthorhombic ScB3 and hexagonal ScB6 with high hardness,” Phys. Rev. B 105, 094104 (2022).10.1103/physrevb.105.094104
    [29]
    K. Xia, M. D. Ma, C. Liu, H. Gao, Q. Chen, J. L. He, J. Sun, H. T. Wang, Y. J. Tian, and D. Y. Xing, “Superhard and superconducting B6C,” Mater. Today Phys. 3, 76–84 (2017).10.1016/j.mtphys.2017.12.003
    [30]
    L. Wu, B. Wan, H. Liu, H. Gou, Y. Yao, Z. Li, J. Zhang, F. Gao, and H.-k. Mao, “Coexistence of superconductivity and superhardness in beryllium hexaboride driven by inherent multicenter bonding,” J. Phys. Chem. Lett. 7, 4898–4904 (2016).10.1021/acs.jpclett.6b02444
    [31]
    A. Waśkowska, L. Gerward, J. Staun Olsen, K. Ramesh Babu, G. Vaitheeswaran, V. Kanchana, A. Svane, V. B. Filipov, G. Levchenko, and A. Lyaschenko, “Thermoelastic properties of ScB2, TiB2, YB4 and HoB4: Experimental and theoretical studies,” Acta Mater. 59, 4886–4894 (2011).10.1016/j.actamat.2011.04.030
    [32]
    P. K. Liao and K. E. Spear, “The B-Y (boron-yttrium) system,” J. Phase Equilib. 16, 521–524 (1995).10.1007/bf02646722
    [33]
    Y. Zhou, H. Xiang, Z. Feng, and Z. Li, “General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal),” J. Mater. Sci. Technol. 31, 285–294 (2015).10.1016/j.jmst.2014.09.014
    [34]
    B. T. Matthias, T. H. Geballe, K. Andres, E. Corenzwit, G. W. Hull, and J. P. Maita, “Superconductivity and antiferromagnetism in boron-rich lattices,” Science 159, 530 (1968).10.1126/science.159.3814.530
    [35]
    J. Wang, X. Song, X. Shao, B. Gao, Q. Li, and Y. Ma, “High-pressure evolution of unexpected chemical bonding and promising superconducting properties of YB6,” J. Phys. Chem. C 122, 27820–27828 (2018).10.1021/acs.jpcc.8b08017
    [36]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.: Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201
    [37]
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14, 2717 (2002).10.1088/0953-8984/14/11/301
    [38]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [39]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
    [40]
    G. J. Martyna, M. L. Klein, and M. E. Tuckerman, “Nosé–Hoover chains: The canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635–2643 (1992).10.1063/1.463940
    [41]
    K. Parlinski, Z. Q. Li, and Y. Kawazoe, “First-principles determination of the soft mode in cubic ZrO2,” Phys. Rev. Lett. 78, 4063–4066 (1997).10.1103/physrevlett.78.4063
    [42]
    A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
    [43]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [44]
    P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905–922 (1975).10.1103/physrevb.12.905
    [45]
    R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., London, Sect. A 65, 349–354 (1952).10.1088/0370-1298/65/5/307
    [46]
    X.-Q. Chen, H. Niu, D. Li, and Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses,” Intermetallics 19, 1275–1281 (2011).10.1016/j.intermet.2011.03.026
    [47]
    A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, “Ionic high-pressure form of elemental boron,” Nature 457, 863–867 (2009).10.1038/nature08164
    [48]
    Y. Chen, Q.-M. Hu, and R. Yang, “P6222 phase of yttrium above 206 GPa from first principles,” Phys. Rev. B 84, 132101 (2011).10.1103/physrevb.84.132101
    [49]
    Y. Wu, P. Lazic, G. Hautier, K. Persson, and G. Ceder, “First principles high throughput screening of oxynitrides for water-splitting photocatalysts,” Energy Environ. Sci. 6, 157–168 (2013).10.1039/c2ee23482c
    [50]
    A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).10.1063/1.458517
    [51]
    R. Dronskowski and P. E. Bloechl, “Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations,” J. Phys. Chem. 97, 8617–8624 (1993).10.1021/j100135a014
    [52]
    Z.-j. Wu, E.-j. Zhao, H.-p. Xiang, X.-f. Hao, X.-j. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B 76, 054115 (2007).10.1103/physrevb.76.054115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (36) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return