Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Makarov Sergey, Dyachkov Sergey, Pikuz Tatiana, Katagiri Kento, Nakamura Hirotaka, Zhakhovsky Vasily, Inogamov Nail, Khokhlov Victor, Martynenko Artem, Albertazzi Bruno, Rigon Gabriel, Mabey Paul, Hartley Nicholas J., Inubushi Yuichi, Miyanishi Kohei, Sueda Keiichi, Togashi Tadashi, Yabashi Makina, Yabuuchi Toshinori, Okuchi Takuo, Kodama Ryosuke, Pikuz Sergey, Koenig Michel, Ozaki Norimasa. Direct imaging of shock wave splitting in diamond at Mbar pressure[J]. Matter and Radiation at Extremes, 2023, 8(6): 066601. doi: 10.1063/5.0156681
Citation: Makarov Sergey, Dyachkov Sergey, Pikuz Tatiana, Katagiri Kento, Nakamura Hirotaka, Zhakhovsky Vasily, Inogamov Nail, Khokhlov Victor, Martynenko Artem, Albertazzi Bruno, Rigon Gabriel, Mabey Paul, Hartley Nicholas J., Inubushi Yuichi, Miyanishi Kohei, Sueda Keiichi, Togashi Tadashi, Yabashi Makina, Yabuuchi Toshinori, Okuchi Takuo, Kodama Ryosuke, Pikuz Sergey, Koenig Michel, Ozaki Norimasa. Direct imaging of shock wave splitting in diamond at Mbar pressure[J]. Matter and Radiation at Extremes, 2023, 8(6): 066601. doi: 10.1063/5.0156681

Direct imaging of shock wave splitting in diamond at Mbar pressure

doi: 10.1063/5.0156681
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: seomakarov28@gmail.com
  • Received Date: 2023-05-02
  • Accepted Date: 2023-08-01
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • Understanding the behavior of matter at extreme pressures of the order of a megabar (Mbar) is essential to gain insight into various physical phenomena at macroscales—the formation of planets, young stars, and the cores of super-Earths, and at microscales—damage to ceramic materials and high-pressure plastic transformation and phase transitions in solids. Under dynamic compression of solids up to Mbar pressures, even a solid with high strength exhibits plastic properties, causing the induced shock wave to split in two: an elastic precursor and a plastic shock wave. This phenomenon is described by theoretical models based on indirect measurements of material response. The advent of x-ray free-electron lasers (XFELs) has made it possible to use their ultrashort pulses for direct observations of the propagation of shock waves in solid materials by the method of phase-contrast radiography. However, there is still a lack of comprehensive data for verification of theoretical models of different solids. Here, we present the results of an experiment in which the evolution of the coupled elastic–plastic wave structure in diamond was directly observed and studied with submicrometer spatial resolution, using the unique capabilities of the x-ray free-electron laser (XFEL). The direct measurements allowed, for the first time, the fitting and validation of the 2D failure model for diamond in the range of several Mbar. Our experimental approach opens new possibilities for the direct verification and construction of equations of state of matter in the ultra-high-stress range, which are relevant to solving a variety of problems in high-energy-density physics.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Sergey Makarov: Investigation (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Sergey Dyachkov: Investigation (equal); Software (equal); Validation (equal); Writing – review & editing (equal). Tatiana Pikuz: Investigation (equal); Methodology (equal); Writing – review & editing (equal). Kento Katagiri: Methodology (equal); Writing – review & editing (equal). Hirotaka Nakamura: Methodology (equal). Vasily Zhakhovsky: Investigation (equal); Validation (supporting); Writing – review & editing (supporting). Nail Inogamov: Investigation (equal); Writing – review & editing (supporting). Victor Khokhlov: Investigation (equal); Writing – review & editing (supporting). Artem Martynenko: Investigation (supporting); Validation (equal); Writing – review & editing (supporting). Bruno Albertazzi: Methodology (equal); Writing – review & editing (supporting). Gabriel Rigon: Methodology (equal). Paul Mabey: Methodology (equal); Writing – review & editing (supporting). Nicholas J. Hartley: Methodology (equal); Writing – review & editing (equal). Yuichi Inubushi: Methodology (equal). Kohei Miyanishi: Methodology (equal). Keiichi Sueda: Methodology (equal). Tadashi Togashi: Methodology (equal). Makina Yabashi: Methodology (equal). Toshinori Yabuuchi: Methodology (equal). Takuo Okuchi: Methodology (equal). Ryosuke Kodama: Writing – review & editing (supporting). Sergey Pikuz: Investigation (equal); Writing – review & editing (supporting). Michel Koenig: Conceptualization (equal); Writing – review & editing (supporting). Norimasa Ozaki: Conceptualization (equal); Writing – review & editing (supporting).
    Author Contributions
    N.O. and M.K. conceived the project. T.P., H.N., G.R., B.A., P.M., M.K., N.J.H., K.K., Y.I., K.M., K.S., T.T., M.Y., T.Y., T.O., and N.O. performed the experiment. MULTI simulations were performed by A.M. SPH simulations were performed by S.D. WavePropaGator simulations were performed by S.M. S.M. analyzed the experimental data and interpreted the experimental results with S.D., T.P., S.P., V.Z., N.I., R.K., and V.K. The paper was written by S.M. and S.D. All coauthors commented on the manuscript.
    The data that support the findings of this study are available within the article and its supplementary material. The data that support the findings of this study are available from the corresponding author upon reasonable request. The SPH, MULTI, and WavePropaGator codes used for this study are available on reasonable request from S.D. (serj.dyachkov@gmail.com), A.M. (martynenko.art@gmail.com), and S.M. (seomakarov28@gmail.com), respectively.
  • loading
  • [1]
    T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
    [2]
    S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Mounaix, and M. Rabec Le Gloahec, “Laser-shock compression of diamond and evidence of a negative-slope melting curve,” Nat. Mater. 6, 274–277 (2007).10.1038/nmat1863
    [3]
    G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).
    [4]
    J. M. Winey, M. D. Knudson, and Y. M. Gupta, “Shock compression response of diamond single crystals at multimegabar stresses,” Phys. Rev. B 101, 184105 (2020).10.1103/physrevb.101.184105
    [5]
    S. J. Turneaure, P. Renganathan, J. M. Winey, and Y. M. Gupta, “Twinning and dislocation evolution during shock compression and release of single crystals: Real-time x-ray diffraction,” Phys. Rev. Lett. 120, 265503 (2018).10.1103/physrevlett.120.265503
    [6]
    G. S. Collins, H. J. Melosh, and R. A. Marcus, “Earth impact effects program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth,” Meteorit. Planet. Sci. 40, 817–840 (2005).10.1111/j.1945-5100.2005.tb00157.x
    [7]
    D. G. Hicks, T. R. Boehly, P. M. Celliers, D. K. Bradley, J. H. Eggert, R. S. McWilliams, R. Jeanloz, and G. W. Collins, “High-precision measurements of the diamond Hugoniot in and above the melt region,” Phys. Rev. B 78, 174102 (2008).10.1103/physrevb.78.174102
    [8]
    M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322, 1822–1825 (2008).10.1126/science.1165278
    [9]
    J. H. Eggert, D. G. Hicks, P. M. Celliers, D. K. Bradley, R. S. McWilliams, R. Jeanloz, J. E. Miller, T. R. Boehly, and G. W. Collins, “Melting temperature of diamond at ultrahigh pressure,” Nat. Phys. 6, 40–43 (2010).10.1038/nphys1438
    [10]
    R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun, J. R. Patterson, R. E. Rudd, J. Biener, A. E. Lazicki, A. V. Hamza, J. Wang, T. Braun, L. X. Benedict, P. M. Celliers, and G. W. Collins, “Ramp compression of diamond to five terapascals,” Nature 511, 330–333 (2014).10.1038/nature13526
    [11]
    R. S. McWilliams, J. H. Eggert, D. G. Hicks, D. K. Bradley, P. M. Celliers, D. K. Spaulding, T. R. Boehly, G. W. Collins, and R. Jeanloz, “Strength effects in diamond under shock compression from 0.1 to 1 TPa,” Phys. Rev. B 81, 014111 (2010).10.1103/physrevb.81.014111
    [12]
    K. Jakubowska, D. Mancelli, R. Benocci, J. Trela, I. Errea, A. S. Martynenko, P. Neumayer, O. Rosmej, B. Borm, A. Molineri, C. Verona, D. Cannatà, A. Aliverdiev, H. E. Roman, and D. Batani, “Reflecting laser-driven shocks in diamond in the megabar pressure range,” High Power Laser Sci. Eng. 9, e3 (2021).10.1017/hpl.2020.38
    [13]
    H. K. Mao, “High-pressure physics: Sustained static generation of 1.36 to 1.72 megabars,” Science 200, 1145–1147 (1978).10.1126/science.200.4346.1145
    [14]
    B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, and H. k. Mao, “Diamond anvil cell behavior up to 4 Mbar,” Proc. Natl. Acad. Sci. U. S. A. 115, 1713–1717 (2018).10.1073/pnas.1721425115
    [15]
    L. M. Barker, “The development of the VISAR, and its use in shock compression science,” AIP Conf. Proc. 505, 11–18 (2000).10.1063/1.1303413
    [16]
    O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77, 083108 (2006).10.1063/1.2336749
    [17]
    T. Ao and D. H. Dolan, “Effect of window reflections on photonic Doppler velocimetry measurements,” Rev. Sci. Instrum. 82, 023907 (2011).10.1063/1.3551954
    [18]
    F. Barbato, S. Atzeni, D. Batani, D. Bleiner, G. Boutoux, C. Brabetz, P. Bradford, D. Mancelli, P. Neumayer, A. Schiavi, J. Trela, L. Volpe, G. Zeraouli, N. Woolsey, and L. Antonelli, “Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source,” Sci. Rep. 9, 18805 (2019).10.1038/s41598-019-55074-1
    [19]
    L. Antonelli, S. Atzeni, D. Batani, S. D. Baton, E. Brambrink, P. Forestier-Colleoni, M. Koenig, E. L. Bel, Y. Maheut, T. Nguyen-Bui, M. Richetta, C. Rousseaux, X. Ribeyre, A. Schiavi, and J. Trela, “X-ray absorption radiography for high pressure shock wave studies,” J. Instrum. 13, C01013 (2018).10.1088/1748-0221/13/01/c01013
    [20]
    C. E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, B. A. Remington, R. E. Rudd, M. Sliwa, M. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruiz, and J. S. Wark, “In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics,” Nature 550, 496–499 (2017).10.1038/nature24061
    [21]
    B. Albertazzi, N. Ozaki, V. Zhakhovsky, A. Faenov, H. Habara, M. Harmand, N. Hartley, D. Ilnitsky, N. Inogamov, Y. Inubushi, T. Ishikawa, T. Katayama, T. Koyama, M. Koenig, A. Krygier, T. Matsuoka, S. Matsuyama, E. McBride, K. P. Migdal, G. Morard, H. Ohashi, T. Okuchi, T. Pikuz, N. Purevjav, O. Sakata, Y. Sano, T. Sato, T. Sekine, Y. Seto, K. Takahashi, K. Tanaka, Y. Tange, T. Togashi, K. Tono, Y. Umeda, T. Vinci, M. Yabashi, T. Yabuuchi, K. Yamauchi, H. Yumoto, and R. Kodama, “Dynamic fracture of tantalum under extreme tensile stress,” Sci. Adv. 3, e1602705 (2017).10.1126/sciadv.1602705
    [22]
    A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL,” Sci. Rep. 5, 11089 (2015).10.1038/srep11089
    [23]
    B. Nagler, A. Schropp, E. C. Galtier, B. Arnold, S. B. Brown, A. Fry, A. Gleason, E. Granados, A. Hashim, J. B. Hastings, D. Samberg, F. Seiboth, F. Tavella, Z. Xing, H. J. Lee, and C. G. Schroer, “The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS,” Rev. Sci. Instrum. 87, 103701 (2016).10.1063/1.4963906
    [24]
    D. S. Hodge, A. F. T. Leong, S. Pandolfi, K. Kurzer-Ogul, D. S. Montgomery, H. Aluie, C. Bolme, T. Carver, E. Cunningham, C. B. Curry, M. Dayton, F.-J. Decker, E. Galtier, P. Hart, D. Khaghani, H. Ja Lee, K. Li, Y. Liu, K. Ramos, J. Shang, S. Vetter, B. Nagler, R. L. Sandberg, and A. E. Gleason, “Multi-frame, ultrafast, x-ray microscope for imaging shockwave dynamics,” Opt. Express 30, 38405 (2022).10.1364/oe.472275
    [25]
    J. Hagemann, M. Vassholz, H. Hoeppe, M. Osterhoff, J. M. Rosselló, R. Mettin, F. Seiboth, A. Schropp, J. Möller, J. Hallmann, C. Kim, M. Scholz, U. Boesenberg, R. Schaffer, A. Zozulya, W. Lu, R. Shayduk, A. Madsen, C. G. Schroer, and T. Salditt, “Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime,” J. Synchrotron Radiat. 28, 52–63 (2021).10.1107/s160057752001557x
    [26]
    F. Seiboth, L. B. Fletcher, D. McGonegle, S. Anzellini, L. E. Dresselhaus-Cooper, M. Frost, E. Galtier, S. Goede, M. Harmand, H. J. Lee, A. L. Levitan, K. Miyanishi, B. Nagler, I. Nam, N. Ozaki, M. Rödel, A. Schropp, C. Spindloe, P. Sun, J. S. Wark, J. Hastings, S. H. Glenzer, and E. E. McBride, “Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS,” Appl. Phys. Lett. 112, 221907 (2018).10.1063/1.5031907
    [27]
    A. Y. Faenov, T. A. Pikuz, P. Mabey, B. Albertazzi, T. Michel, G. Rigon, S. A. Pikuz, A. Buzmakov, S. Makarov, N. Ozaki, T. Matsuoka, K. Katagiri, K. Miyanishi, K. Takahashi, K. A. Tanaka, Y. Inubushi, T. Togashi, T. Yabuuchi, M. Yabashi, A. Casner, R. Kodama, and M. Koenig, “Advanced high resolution x-ray diagnostic for HEDP experiments,” Sci. Rep. 8, 16407 (2018).10.1038/s41598-018-34717-9
    [28]
    G. Rigon, B. Albertazzi, T. Pikuz, P. Mabey, V. Bouffetier, N. Ozaki, T. Vinci, F. Barbato, E. Falize, Y. Inubushi, N. Kamimura, K. Katagiri, S. Makarov, M. J. E. Manuel, K. Miyanishi, S. Pikuz, O. Poujade, K. Sueda, T. Togashi, Y. Umeda, M. Yabashi, T. Yabuuchi, G. Gregori, R. Kodama, A. Casner, and M. Koenig, “Micron-scale phenomena observed in a turbulent laser-produced plasma,” Nat. Commun. 12, 2679 (2021).10.1038/s41467-021-22891-w
    [29]
    S. B. Brown, A. E. Gleason, E. Galtier, A. Higginbotham, B. Arnold, A. Fry, E. Granados, A. Hashim, C. G. Schroer, A. Schropp, F. Seiboth, F. Tavella, Z. Xing, W. Mao, H. J. Lee, and B. Nagler, “Direct imaging of ultrafast lattice dynamics,” Sci. Adv. 5, eaau8044 (2019).10.1126/sciadv.aau8044
    [30]
    S. F. Wang, Y. F. Hsu, J. C. Pu, J. C. Sung, and L. G. Hwa, “Determination of acoustic wave velocities and elastic properties for diamond and other hard materials,” Mater. Chem. Phys. 85, 432–437 (2004).10.1016/j.matchemphys.2004.02.003
    [31]
    R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, “MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Commun. 49, 475–505 (1988).10.1016/0010-4655(88)90008-2
    [32]
    J. M. Lang, J. M. Winey, and Y. M. Gupta, “Strength and deformation of shocked diamond single crystals: Orientation dependence,” Phys. Rev. B 97, 104106 (2018).10.1103/physrevb.97.104106
    [33]
    S. A. Dyachkov, A. N. Parshikov, M. S. Egorova, S. Y. Grigoryev, V. V. Zhakhovsky, and S. A. Medin, “Explicit failure model for boron carbide ceramics under shock loading,” J. Appl. Phys. 124, 085902 (2018).10.1063/1.5043418
    [34]
    M. S. Egorova, S. A. Dyachkov, A. N. Parshikov, and V. V. Zhakhovsky, “Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains,” Comput. Phys. Commun. 234, 112–125 (2019).10.1016/j.cpc.2018.07.019
    [35]
    A. N. Parshikov and S. A. Medin, “Smoothed particle hydrodynamics using interparticle contact algorithms,” J. Comput. Phys. 180, 358–382 (2002).10.1006/jcph.2002.7099
    [36]
    L. Samoylova, A. Buzmakov, O. Chubar, and H. Sinn, “WavePropaGator: Interactive framework for X-ray free-electron laser optics design and simulations,” J. Appl. Crystallogr. 49, 1347–1355 (2016).10.1107/s160057671600995x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (33) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return