Citation: | Guo Zixuan, Li Xing, Bergara Aitor, Ding Shicong, Zhang Xiaohua, Yang Guochun. Pressure-induced evolution of stoichiometries and electronic structures of host–guest Na–B compounds[J]. Matter and Radiation at Extremes, 2023, 8(6): 068401. doi: 10.1063/5.0155005 |
[1] |
E. Wigner and F. Seitz, “On the constitution of metallic sodium,” Phys. Rev. 43, 804 (1933).10.1103/physrev.43.804
|
[2] |
B. Rousseau, Y. Xie, Y. Ma, and A. Bergara, “Exotic high pressure behavior of light alkali metals, lithium and sodium,” Eur. Phys. J. B 81, 1–14 (2011).10.1140/epjb/e2011-10972-9
|
[3] |
R. J. Nelmes, M. I. McMahon, J. S. Loveday, and S. Rekhi, “Structure of Rb-III: Novel modulated stacking structures in alkali metals,” Phys. Rev. Lett. 88, 155503 (2002).10.1103/physrevlett.88.155503
|
[4] |
H. Olijnyk and W. B. Holzapfel, “Phase transitions in K and Rb under pressure,” Phys. Lett. A 99, 381–383 (1983).10.1016/0375-9601(83)90298-0
|
[5] |
Y. Ma, A. R. Oganov, and Y. Xie, “High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm,” Phys. Rev. B 78, 014102 (2008).10.1103/physrevb.78.014102
|
[6] |
G. Fabbris, J. Lim, L. S. I. Veiga, D. Haskel, and J. S. Schilling, “Electronic and structural ground state of heavy alkali metals at high pressure,” Phys. Rev. B 91, 085111 (2015).10.1103/physrevb.91.085111
|
[7] |
Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
|
[8] |
T. Matsuoka and K. Shimizu, “Direct observation of a pressure-induced metal-to-semiconductor transition in lithium,” Nature 458, 186–189 (2009).10.1038/nature07827
|
[9] |
M. Marqués, M. I. McMahon, E. Gregoryanz, M. Hanfland, C. L. Guillaume, C. J. Pickard, G. J. Ackland, and R. J. Nelmes, “Crystal structures of dense lithium: A metal-semiconductor-metal transition,” Phys. Rev. Lett. 106, 095502 (2011).10.1103/physrevlett.106.095502
|
[10] |
H. Hosono, S.-W. Kim, S. Matsuishi, S. Tanaka, A. Miyake, T. Kagayama, and K. Shimizu, “Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals,” Philos. Trans. R. Soc., A 373, 20140450 (2015).10.1098/rsta.2014.0450
|
[11] |
Y. Sun, L. Zhao, C. J. Pickard, R. J. Hemley, Y. Zheng, and M. Miao, “Chemical interactions that govern the structures of metals,” Proc. Natl. Acad. Sci. U. S. A. 120, e2218405120 (2023).10.1073/pnas.2218405120
|
[12] |
Y. Li, Y. Wang, C. J. Pickard, R. J. Needs, Y. Wang, and Y. Ma, “Metallic icosahedron phase of sodium at terapascal pressures,” Phys. Rev. Lett. 114, 125501 (2015).10.1103/physrevlett.114.125501
|
[13] |
P. S. Krstic, J. P. Allain, F. J. Dominguez-Gutierrez, and F. Bedoya, “Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions,” Matter Radiat. Extremes 3, 165–187 (2018).10.1016/j.mre.2018.03.003
|
[14] |
A. Rodriguez-Prieto, A. Bergara, V. M. Silkin, and P. M. Echenique, “Complexity and Fermi surface deformation in compressed lithium,” Phys. Rev. B 74, 172104 (2006).10.1103/physrevb.74.172104
|
[15] |
A. Bergara, J. B. Neaton, and N. W. Ashcroft, “Pairing, π-bonding, and the role of nonlocality in a dense lithium monolayer,” Phys. Rev. B 62, 8494 (2000).10.1103/physrevb.62.8494
|
[16] |
A. Rodriguez-Prieto and A. Bergara, “Pressure induced complexity in a lithium monolayer: Ab initio calculations,” Phys. Rev. B 72, 125406 (2005).10.1103/physrevb.72.125406
|
[17] |
X. Li, X. Zhang, A. Bergara, Y. Liu, and G. Yang, “Structural and electronic properties of Na-B-H compounds at high pressure,” Phys. Rev. B 106, 174104 (2022).10.1103/physrevb.106.174104
|
[18] |
Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, “Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure,” Phys. Rev. Lett. 123, 097001 (2019).10.1103/physrevlett.123.097001
|
[19] |
X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X. F. Zhou, V. B. Prakapenka, Z. Konôpková, I. A. Popov, A. I. Boldyrev, and H. T. Wang, “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
|
[20] |
X. Wang, Y. Wang, J. Wang, S. Pan, Q. Lu, H.-T. Wang, D. Xing, and J. Sun, “Pressure stabilized lithium-aluminum compounds with both superconducting and superionic behaviors,” Phys. Rev. Lett. 129, 246403 (2022).10.1103/physrevlett.129.246403
|
[21] |
P. Baettig and E. Zurek, “Pressure-stabilized sodium polyhydrides: NaHn (n > 1),” Phys. Rev. Lett. 106, 237002 (2011).10.1103/physrevlett.106.237002
|
[22] |
H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005
|
[23] |
A. Hermann, A. Suarez-Alcubilla, I. G. Gurtubay, L.-M. Yang, A. Bergara, N. W. Ashcroft, and R. Hoffmann, “LiB and its boron-deficient variants under pressure,” Phys. Rev. B 86, 144110 (2012).10.1103/physrevb.86.144110
|
[24] |
S. Zhang, X. Du, J. Lin, A. Bergara, X. Chen, X. Liu, X. Zhang, and G. Yang, “Superconducting boron allotropes,” Phys. Rev. B 101, 174507 (2020).10.1103/physrevb.101.174507
|
[25] |
T. Chen, Q. Gu, Q. Chen, X. Wang, C. J. Pickard, R. J. Needs, D. Xing, and J. Sun, “Prediction of quasi-one-dimensional superconductivity in metastable two-dimensional boron,” Phys. Rev. B 101, 054518 (2020).10.1103/physrevb.101.054518
|
[26] |
P. Zhang, Y. Tian, Y. Yang, H. Liu, and G. Liu, “Stable Rb-B compounds under high pressure,” Phys. Rev. Res. 5, 013130 (2023).10.1103/physrevresearch.5.013130
|
[27] |
X.-L. He, X. Dong, Q. Wu, Z. Zhao, Q. Zhu, A. R. Oganov, Y. Tian, D. Yu, X.-F. Zhou, and H.-T. Wang, “Predicting the ground-state structure of sodium boride,” Phys. Rev. B 97, 100102 (2018).10.1103/physrevb.97.100102
|
[28] |
B. Zhao, X. Wang, L. Yu, Y. Liu, X. Chen, B. Yang, G. Yang, S. Zhang, L. Gu, and X. Liu, “Fabrication of alkali metal boride: Honeycomb-like structured NaB4 with high hardness and excellent electrical conductivity,” Adv. Funct. Mater. 32, 2110872 (2022).10.1002/adfm.202110872
|
[29] |
F. Peng, M. Miao, H. Wang, Q. Li, and Y. Ma, “Predicted lithium-boron compounds under high pressure,” J. Am. Chem. Soc. 134, 18599–18605 (2012).10.1021/ja308490a
|
[30] |
K. Jun, Y. Sun, Y. Xiao, Y. Zeng, R. Kim, H. Kim, L. J. Miara, D. Im, Y. Wang, and G. Ceder, “Lithium superionic conductors with corner-sharing frameworks,” Nat. Mater. 21, 924–931 (2022).10.1038/s41563-022-01222-4
|
[31] |
M. Hara, M. Kitano, and H. Hosono, “Ru-loaded C12A7:(e−) electride as a catalyst for ammonia synthesis,” ACS Catal. 7, 2313–2324 (2017).10.1021/acscatal.6b03357
|
[32] |
Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, and H. Hosono, “Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis,” J. Am. Chem. Soc. 138, 3970–3973 (2016).10.1021/jacs.6b00124
|
[33] |
Z. Zhao, S. Zhang, T. Yu, H. Xu, A. Bergara, and G. Yang, “Predicted pressure-induced superconducting transition in electride Li6P,” Phys. Rev. Lett. 122, 097002 (2019).10.1103/physrevlett.122.097002
|
[34] |
Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, F. Li, H. Li, D. Li, and T. Cui, “Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures,” Phys. Rev. Lett. 127, 157002 (2021).10.1103/physrevlett.127.157002
|
[35] |
Z. Wan, W. Xu, T. Yang, and R. Zhang, “As-Li electrides under high pressure: Superconductivity, plastic, and superionic states,” Phys. Rev. B 106, L060506 (2022).10.1103/physrevb.106.l060506
|
[36] |
Y. Wang, J. Wang, A. Hermann, C. Liu, H. Gao, E. Tosatti, H.-T. Wang, D. Xing, and J. Sun, “Electronically driven 1D cooperative diffusion in a simple cubic crystal,” Phys. Rev. X 11, 011006 (2021).10.1103/physrevx.11.011006
|
[37] |
H.-J. Sung, W. H. Han, I.-H. Lee, and K. J. Chang, “Superconducting open-framework allotrope of silicon at ambient pressure,” Phys. Rev. Lett. 120, 157001 (2018).10.1103/physrevlett.120.157001
|
[38] |
X. Du, H. Lou, J. Wang, and G. Yang, “Pressure-induced Na–Au compounds with novel structural units and unique charge transfer,” Phys. Chem. Chem. Phys. 23, 6455–6461 (2021).10.1039/d0cp06191c
|
[39] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
[40] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
|
[41] |
X. Li, X. Zhang, Y. Liu, and G. Yang, “Bonding-unsaturation-dependent superconductivity in P-rich sulfides,” Matter Radiat. Extremes 7, 048402 (2022).10.1063/5.0098035.
|
[42] |
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
|
[43] |
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
|
[44] |
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990–6995 (2017).10.1073/pnas.1704505114
|
[45] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
|
[46] |
A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
|
[47] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
|
[48] |
L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
|
[49] |
Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang, B. Min, Y. Long, R. Yu, L. Wang, M. Ye, Z. Zhang, V. Prakapenka, S. Chariton, P. A. Ginsberg, J. Bass, S. Yuan, H. Liu, and C. Jin, “Superconductivity above 200 K discovered in superhydrides of calcium,” Nat. Commun. 13, 2863 (2022).10.1038/s41467-022-30454-w
|
[50] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
|
[51] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
|
[52] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
|
[53] |
P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).10.1016/0010-4655(90)90187-6
|
[54] |
H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188 (1976).10.1103/physrevb.13.5188
|
[55] |
A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
|
[56] |
S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys. 73, 515 (2001).10.1103/revmodphys.73.515
|
[57] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
|
[58] |
D. J. Evans and B. L. Holian, “The Nose–Hoover thermostat,” J. Chem. Phys. 83, 4069–4074 (1985).10.1063/1.449071
|
[59] |
X. Zhong, Y. Sun, T. Iitaka, M. Xu, H. Liu, R. J. Hemley, C. Chen, and Y. Ma, “Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides,” J. Am. Chem. Soc. 144, 13394–13400 (2022).10.1021/jacs.2c05834
|
[60] |
A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, “Ionic high-pressure form of elemental boron,” Nature 457, 863–867 (2009).10.1038/nature07736
|
[61] |
C. Liu, H. Gao, A. Hermann, Y. Wang, M. Miao, C. J. Pickard, R. J. Needs, H.-T. Wang, D. Xing, and J. Sun, “Plastic and superionic helium ammonia compounds under high pressure and high temperature,” Phys. Rev. X 10, 021007 (2020).10.1103/physrevx.10.021007
|
[62] |
Q. Zhang, C. Zhang, Z. D. Hood, M. Chi, C. Liang, N. H. Jalarvo, M. Yu, and H. Wang, “Abnormally low activation energy in cubic Na3SbS4 superionic conductors,” Chem. Mater. 32, 2264–2271 (2020).10.1021/acs.chemmater.9b03879
|
[63] |
Q. Chen, N. H. Jalarvo, and W. Lai, “Na ion dynamics in P2-Nax[Ni1/3Ti2/3]O2: A combination of quasi-elastic neutron scattering and first-principles molecular dynamics study,” J. Mater. Chem. A 8, 25290–25297 (2020).10.1039/d0ta08400j
|
[64] |
J. Li, Y. Geng, Z. Xu, P. Zhang, G. Garbarino, M. Miao, Q. Hu, and X. Wang, “Mechanochemistry and the evolution of ionic bonds in dense silver iodide,” JACS Au 3, 402–408 (2023).10.1021/jacsau.2c00550
|
[65] |
Y.-H. Yin and L. Zhang, “The structures and properties of (AgCl)n (n = 2–13),” Comput. Theor. Chem. 1097, 70–78 (2016).10.1016/j.comptc.2016.10.013
|
[66] |
R. Paul, S. X. Hu, V. V. Karasiev, S. A. Bonev, and D. N. Polsin, “Thermal effects on the electronic properties of sodium electride under high pressures,” Phys. Rev. B 102, 094103 (2020).10.1103/physrevb.102.094103
|
[67] |
D. N. Polsin, A. Lazicki, X. Gong, S. J. Burns, F. Coppari, L. E. Hansen, B. J. Henderson, M. F. Huff, M. I. McMahon, M. Millot, R. Paul, R. F. Smith, J. H. Eggert, G. W. Collins, and J. R. Rygg, “Structural complexity in ramp-compressed sodium to 480 GPa,” Nat. Commun. 13, 2534 (2022).10.1038/s41467-022-29813-4
|
[68] |
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175 (1957).10.1103/physrev.108.1175
|
[69] |
J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2,” Phys. Rev. Lett. 86, 4656 (2001).10.1103/physrevlett.86.4656
|
[70] |
J. Du, X. Li, and F. Peng, “Pressure-induced evolution of structures and promising superconductivity of ScB6,” Phys. Chem. Chem. Phys. 24, 10079–10084 (2022).10.1039/d2cp00711h
|
[71] |
P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905 (1975).10.1103/physrevb.12.905
|
[72] |
L. Wu, B. Wan, H. Liu, H. Gou, Y. Yao, Z. Li, J. Zhang, F. Gao, and H.-k. Mao, “Coexistence of superconductivity and superhardness in beryllium hexaboride driven by inherent multicenter bonding,” J. Phys. Chem. Lett. 7, 4898–4904 (2016).10.1021/acs.jpclett.6b02444
|
[73] |
M. M. Davari Esfahani, Q. Zhu, H. Dong, A. R. Oganov, S. Wang, M. S. Rakitin, and X.-F. Zhou, “Novel magnesium borides and their superconductivity,” Phys. Chem. Chem. Phys. 19, 14486–14494 (2017).10.1039/c7cp00840f
|
[74] |
Z. Cui, Q. Yang, X. Qu, X. Zhang, Y. Liu, and G. Yang, “A superconducting boron allotrope featuring anticlinal pentapyramids,” J. Mater. Chem. C 10, 672–679 (2022).10.1039/d1tc03908c
|
![]() |
![]() |