Citation: | Kojima Sadaoki, Miyatake Tatsuhiko, Sakaki Hironao, Kuroki Hiroyoshi, Shimizu Yusuke, Harada Hisanori, Inoue Norihiro, Dinh Thanh Hung, Hata Masayasu, Hasegawa Noboru, Mori Michiaki, Ishino Masahiko, Nishiuchi Mamiko, Kondo Kotaro, Nishikino Masaharu, Kando Masaki, Shirai Toshiyuki, Kondo Kiminori. Induction heating for desorption of surface contamination for high-repetition laser-driven carbon-ion acceleration[J]. Matter and Radiation at Extremes, 2023, 8(5): 054002. doi: 10.1063/5.0153578 |
[1] |
K. Ledingham, P. Bolton, N. Shikazono, and C.-M. Ma, “Towards laser driven hadron cancer radiotherapy,” Appl. Sci. 4, 402 (2014).10.3390/app4030402
|
[2] |
T. D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D. S. Seneviratne, and D. M. Trifiletti, “Carbon ion therapy: A modern review of an emerging technology,” Front. Oncol. 10, 82 (2020).10.3389/fonc.2020.00082
|
[3] |
H. Ishikawa, Y. Hiroshima, N. Kanematsu, T. Inaniwa, T. Shirai, R. Imai, H. Suzuki, K. Akakura, M. Wakatsuki, T. Ichikawa, and H. Tsuji, “Carbon-ion radiotherapy for urological cancers,” Int. J. Urol. 29, 1109 (2022).10.1111/iju.14950
|
[4] |
A. Pompos, R. L. Foote, A. C. Koong, Q. T. Le, R. Mohan, H. Paganetti, and H. Choy, “National effort to re-establish heavy ion cancer therapy in the United States,” Front. Oncol. 12, 880712 (2022).10.3389/fonc.2022.880712
|
[5] |
U. Amaldi, R. Bonomi, S. Braccini, M. Crescenti, A. Degiovanni, M. Garlasché, A. Garonna, G. Magrin, C. Mellace, P. Pearce, G. Pittà, P. Puggioni, E. Rosso, S. Verdú Andrés, R. Wegner, M. Weiss, and R. Zennaro, “Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs,” Nucl. Instrum. Methods Phys. Res., Sect. A 620, 563 (2010).10.1016/j.nima.2010.03.130
|
[6] |
N. Kanematsu, T. Furukawa, Y. Hara, T. Inaniwa, Y. Iwata, K. Mizushima, S. Mori, and T. Shirai, “New technologies for carbon-ion radiotherapy—Developments at the National Institute of Radiological Sciences, QST, Japan,” Radiat. Phys. Chem. 162, 90 (2019).10.1016/j.radphyschem.2019.04.038
|
[7] |
Y. Iwata, T. Shirai, K. Mizushima, S. Matsuba, Y. Yang, E. Noda, M. Urata, M. Muramatsu, K. Katagiri, S. Yonai, T. Inaniwa, S. Sato, Y. Abe, T. Fujimoto, T. Sasano, T. Shiraishi, T. Suzuki, K. Takahashi, K. Kondo, H. Sakaki, M. Nishiuchi, T. Orikasa, S. Takayama, S. Amano, K. Nakanishi, M. Tachibana, Y. Touchi, S. Tsubomatsu, and S. Nomura, “Design of a compact superconducting accelerator for advanced heavy-ion therapy,” Nucl. Instrum. Methods Phys. Res., Sect. A 1053, 168312 (2023).10.1016/j.nima.2023.168312
|
[8] |
R. Lera, P. Bellido, I. Sanchez, P. Mur, M. Seimetz, J. M. Benlloch, M. Roso, L. Ruiz-de-la-Cruz, and A. Ruiz-De-La-Cruz, “Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration,” Appl. Phys. B 125, 4 (2019).10.1007/s00340-018-7113-8
|
[9] |
S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine, O. Renner, V. Tikhonchuk, H. Bohlin, A. Fajstavr, J.-C. Hernandez, N. Jourdain, D. Kumar, D. Modřanský, A. Pokorný, A. Wolf, S. Zhai, G. Korn, and S. Weber, “Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3,” High Power Laser Sci. Eng. 9, e30 (2021).10.1017/hpl.2021.16
|
[10] |
X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett. 9, 4268 (2009).10.1021/nl902515k
|
[11] |
B. M. Hegelich, B. J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R. K. Schulze, and J. C. Fernández, “Laser acceleration of quasi-monoenergetic MeV ion beams,” Nature 439, 441 (2006).10.1038/nature04400
|
[12] |
M. Noaman-ul-Haq, H. Ahmed, T. Sokollik, L. Yu, Z. Liu, X. Yuan, F. Yuan, M. Mirzaie, X. Ge, L. Chen, and J. Zhang, “Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system,” Phys. Rev. Accel. Beams 20, 041301 (2017).10.1103/physrevaccelbeams.20.041301
|
[13] |
M. Nishikino, Y. Ochi, N. Hasegawa, T. Kawachi, H. Yamatani, T. Ohba, T. Kaihori, and K. Nagashima, “Demonstration of a highly coherent 13.9 nm x-ray laser from a silver tape target,” Rev. Sci. Instrum. 80, 116102 (2009).10.1063/1.3262634
|
[14] |
C. Ruiz, J. Benlliure, D. Cortina, D. González, J. Llerena, and L. Martín, “Development of a multi-shot experiment for proton acceleration,” J. Phys.: Conf. Ser. 1079, 012009 (2018).10.1088/1742-6596/1079/1/012009
|
[15] |
G. M. Petrov, L. Willingale, J. Davis, T. Petrova, A. Maksimchuk, and K. Krushelnick, “The impact of contaminants on laser-driven light ion acceleration,” Phys. Plasmas 17, 103111 (2010).10.1063/1.3497002
|
[16] |
P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
|
[17] |
Y. Sentoku, T. E. Cowan, A. Kemp, and H. Ruhl, “High energy proton acceleration in interaction of short laser pulse with dense plasma target,” Phys. Plasmas 10, 2009 (2003).10.1063/1.1556298
|
[18] |
Z. Lécz, J. Budai, A. Andreev, and S. Ter-Avetisyan, “Thickness of natural contaminant layers on metal surfaces and its effects on laser-driven ion acceleration,” Phys. Plasmas 27, 013105 (2020).10.1063/1.5123542
|
[19] |
M. Allen, P. K. Patel, A. Mackinnon, D. Price, S. Wilks, and E. Morse, “Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils,” Phys. Rev. Lett. 93, 265004 (2004).10.1103/physrevlett.93.265004
|
[20] |
K. Fukutani, “Surfaces in vacuum technology,” J. Vac. Soc. Jpn. 56, 204 (2013).10.3131/jvsj2.56.204
|
[21] |
P. Sommer, J. Metzkes-Ng, F. E. Brack, T. E. Cowan, S. D. Kraft, L. Obst, M. Rehwald, H. P. Schlenvoigt, U. Schramm, and K. Zeil, “Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration,” Plasma Phys. Controlled Fusion 60, 054002 (2018).10.1088/1361-6587/aab21e
|
[22] |
M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J. C. Gauthier, M. Geissel, P. Audebert, T. Cowan, and M. Roth, “MeV ion jets from short-pulse-laser interaction with thin foils,” Phys. Rev. Lett. 89, 085002 (2002).10.1103/PhysRevLett.89.085002
|
[23] |
D. T. Offermann, K. A. Flippo, S. A. Gaillard, D. C. Gautier, S. Letzring, J. C. Cobble, G. Wurden, R. P. Johnson, T. Shimada, D. S. Montgomery, R. P. Gonzales, T. Hurry, F. Archuleta, M. J. Schmitt, S. M. Reid, T. Bartal, M. S. Wei, D. P. Higginson, F. N. Beg, M. Geissel, and M. Schollmeier, “Carbon ion beam focusing using laser irradiated, heated diamond hemispherical shells,” J. Phys.: Conf. Ser. 244, 022053 (2010).10.1088/1742-6596/244/2/022053
|
[24] |
K. Kondo, M. Nishiuchi, H. Sakaki, N. P. Dover, H. F. Lowe, T. Miyahara, Y. Watanabe, T. Ziegler, K. Zeil, U. Schramm, E. J. Ditter, G. S. Hicks, O. C. Ettlinger, Z. Najmudin, H. Kiriyama, M. Kando, and K. Kondo, “High-intensity laser-driven oxygen source from CW laser-heated titanium tape targets,” Crystals 10, 837 (2020).10.3390/cryst10090837
|
[25] |
V. Rudnev, D. Loveless, and R. L. Cook, Handbook of Induction Heating, 2nd ed. (CRC Press, Routledge, 2017).
|
[26] | |
[27] |
L. Abadlia, F. Gasser, K. Khalouk, M. Mayoufi, and J. G. Gasser, “New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures,” Rev. Sci. Instrum. 85, 095121 (2014).10.1063/1.4896046
|
[28] |
J. Yin, H. Zhu, L. Ke, P. Hu, C. He, H. Zhang, and X. Zeng, “A finite element model of thermal evolution in laser micro sintering,” Int. J. Adv. Manuf. Technol. 83, 1847 (2016).10.1007/s00170-015-7609-x
|
[29] |
J. L. Glathart, “The inner, initial, magnetic permeability of iron and nickel at ultra-high radiofrequencies,” Phys. Rev. 55, 833 (1939).10.1103/PhysRev.55.833
|
[30] |
S. Kojima, S. Inoue, T. H. Dinh, N. Hasegawa, M. Mori, H. Sakaki, Y. Yamamoto, T. Sasaki, K. Shiokawa, K. Kondo, T. Yamanaka, M. Hashida, S. Sakabe, M. Nishikino, and K. Kondo, “Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions,” Rev. Sci. Instrum. 91, 053305 (2020).10.1063/5.0005450
|
[31] |
J. Schreiber, M. Kaluza, F. Grüner, U. Schramm, B. M. Hegelich, J. Cobble, M. Geissler, E. Brambrink, J. Fuchs, P. Audebert, D. Habs, and K. Witte, “Source-size measurements and charge distributions of ions accelerated from thin foils irradiated by high-intensity laser pulses,” Appl. Phys. B: Lasers Opt. 79, 1041 (2004).10.1007/s00340-004-1665-5
|
[32] |
K. Noda, “Progress of radiotherapy technology with HIMAC,” J. Phys.: Conf. Ser. 1154, 012019 (2019).10.1088/1742-6596/1154/1/012019
|