Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Li X. F., Weng S. M., Gibbon P., Ma H. H., Yew S. H., Liu Z., Zhao Y., Chen M., Sheng Z. M., Zhang J.. Transition from backward to sideward stimulated Raman scattering with broadband lasers in plasmas[J]. Matter and Radiation at Extremes, 2023, 8(6): 065601. doi: 10.1063/5.0152668
Citation: Li X. F., Weng S. M., Gibbon P., Ma H. H., Yew S. H., Liu Z., Zhao Y., Chen M., Sheng Z. M., Zhang J.. Transition from backward to sideward stimulated Raman scattering with broadband lasers in plasmas[J]. Matter and Radiation at Extremes, 2023, 8(6): 065601. doi: 10.1063/5.0152668

Transition from backward to sideward stimulated Raman scattering with broadband lasers in plasmas

doi: 10.1063/5.0152668
More Information
  • Corresponding author: a)Present address: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.; b)Authors to whom correspondence should be addressed: wengsuming@sjtu.edu.cn and zmsheng@sjtu.edu.cn
  • Received Date: 2023-03-31
  • Accepted Date: 2023-08-04
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • Broadband lasers have been proposed as future drivers of inertial confined fusion (ICF) to enhance the laser–target coupling efficiency via the mitigation of various parametric instabilities. The physical mechanisms involved have been explored recently, but are not yet fully understood. Here, stimulated Raman scattering (SRS) as one of the key parametric instabilities is investigated theoretically and numerically for a broadband laser propagating in homogeneous plasma in multidimensional geometry. The linear SRS growth rate is derived as a function of scattering angles for two monochromatic laser beams with a fixed frequency difference δω. If δω/ω0 ∼ 1%, with ω0 the laser frequency, these two laser beams may be decoupled in stimulating backward SRS while remaining coupled for sideward SRS at the laser intensities typical for ICF. Consequently, side-scattering may dominate over backward SRS for two-color laser light. This finding of SRS transition from backward to sideward SRS is then generalized for a broadband laser with a few-percent bandwidth. Particle-in-cell simulations demonstrate that with increasing laser bandwidth, the sideward SRS gradually becomes dominant over the backward SRS. Since sideward SRS is very efficient in producing harmful hot electrons, attention needs to be paid on this effect if ultra-broadband lasers are considered as next-generation ICF drivers.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    X. F. Li: Data curation (lead); Formal analysis (lead); Methodology (equal); Visualization (lead); Writing – original draft (lead). S. M. Weng: Conceptualization (lead); Supervision (equal); Validation (lead); Writing – review & editing (equal). P. Gibbon: Writing – review & editing (equal). H. H. Ma: Software (equal); Writing – review & editing (equal). S. H. Yew: Writing – review & editing (equal). Z. Liu: Data curation (equal); Writing – review & editing (equal). Y. Zhao: Data curation (equal); Writing – review & editing (equal). M. Chen: Writing – review & editing (equal). Z. M. Sheng: Conceptualization (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). J. Zhang: Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    In the coupling case, we can assume that δn(k ± Δk, ω ± Δω) ≃ δn(k, ω). Consequently, Eq. (A9) can be greatly simplified to give the following dispersion relation:ω23ve2k2ωpe2=k2c2ωpe24(Π0+Π×),whereΠ0=a121D(k+k1,ω+ω1)+1D(kk1,ωω1)+a221D(k+k2,ω+ω2)+1D(kk2,ωω2),Π×=a1a21D(k+k1,ω+ω1)+1D(kk1,ωω1)+1D(k+k2,ω+ω2)+1D(kk2,ωω2),and ai = eAi/mec2 and ωpe=4πe2n0/me.
    In the mutual electromagnetic field of two laser beams,AL=A1cos(k1xω1t)+A2cos(k2xω2t)=12A1ei(k1xω1t)+ei(k1xω1t)+12A2ei(k2xω2t)+ei(k2xω2t),the three-wave coupling equations can be obtained from a Fourier analysis as(ω2c2k2ωpe2)As(k,ω)=4πe22meA1[δn(k+k1,ω+ω1)+δn(kk1,ωω1)]+4πe22meA2[δn(k+k2,ω+ω2)+δn(kk2,ωω2)],(ω23ve2k2ωpe2)δn(k,ω)=n0e2k22me2c2A1[As(k+k1,ω+ω2)+As(kk1,ωω1)]+n0e2k22me2c2A2[As(k+k2,ω+ω2)+As(kk2,ωω2)].From Eq. (A2), we obtainAs(k+k1,ω+ω1)=4πe22meA1δn(k,ω)+A2δn(k+k1k2,ω+ω1ω2)D(k+k1,ω+ω1),where D(k,ω)=ω2k2c2ωpe2, and the terms δn(k + k1 + k2, ω + ω1 + ω2) and δn(k + 2k1, ω + 2ω1) are ignored as nonresonant terms. On defining Δk = k1k2 and Δω = ω1ω2, we can rewrite Eq. (A4) asAs(k+k1,ω+ω1)=4πe22meA1δn(k,ω)+A2δn(k+Δk,ω+Δω)D(k+k1,ω+ω1).Using the same method, we also obtainAs(kk1,ωω1)=4πe22meA1δn(k,ω)+A2δn(kΔk,ωΔω)D(kk1,ωω1),As(k+k2,ω+ω2)=4πe22meA2δn(k,ω)+A1δn(kΔk,ωΔω)D(k+k2,k+ω2),As(kk2,ωω2)=4πe22meA2δn(k,ω)+A1δn(k+Δk,ω+Δω)D(kk2,ωω2).Substituting Eqs. (A5)–(A8) into Eq. (A3), we obtain(ω23ve2k2ωpe2)δn(k,ω)=n0e2k22me2c24πe22meΞ,whereΞ=A12δn(k,ω)D(k+k1,ω+ω1)+A12δn(k,ω)D(kk1,ωω1)+A22δn(k,ω)D(k+k2,ω+ω2)+A22δn(k,ω)D(kk2,ωω2)+A1A2δn(k+Δk,ω+Δω)D(k+k1,ω+ω1)+A1A2δn(kΔk,ωΔω)D(kk1,ωω1)+A1A2δn(kΔk,ωΔω)D(k+k2,ω+ω2)+A1A2δn(k+Δk,ω+Δω)D(kk2,ωω2).
    It is worth noting that Π× is the contribution caused by the coupling of these two beams. In the decoupling scenario, the density perturbation terms δn(k ± Δk, ω ± Δω) may cancel each other out. On the other hand, these terms may become ignorable as nonresonant terms in comparison with the term δn(k, ω). Therefore, Eq. (A11a) can be approximated asω23ve2k2ωpe2=k2c2ωpe24Π0.Ignoring the temperature effect, we can combine Eqs. (A11a)–(A11c) and (A12) into the general form of Eqs. (5a)–(5c) in the theoretical model.
    For two monochromatic laser beams at frequencies ω1,2 = ω0 ± 0.5δω, these two beams can be considered to be coupled when their instability regions with Γ > 0 overlap as shown in Fig. 1(b). Otherwise, the two laser beams can be considered to be decoupled.
    In Fig. 6(a), the temporal evolution of the electric field is shown for a broadband laser beam with a relative bandwidth Δω/ω0 = 4.0%. The Fourier transform of this electric field can perfectly reproduce the initially assumed flat-top frequency spectrum and random phase spectrum, as shown in Fig. 6(b). In our simulations, the laser beam is propagating along the x direction, and it has a Gaussian transverse profile in the y direction with a spot size w0. Therefore, the spatial–temporal distribution of the electric field of a broadband laser can be finally expressed asE(t,y)=exp(y2/w02)E(t),where E(t) is given by Eq. (B3). For a broadband laser beam with a relative bandwidth Δω/ω0 = 4.0% and a spot size w0 = 10λ, the spatial–temporal distribution of its electric field is shown in Fig. 6(c).
    To precisely model the electric field of a broadband laser light, we have employed a novel method by taking the inverse Fourier transform of the amplitude–phase frequency spectrum.25 Assuming that the broadband laser light has a continuous amplitude frequency spectrum f(ω), we can construct its amplitude–phase frequency spectrum F(ω) as the following complex function:F(ω)=f(ω)exp[iψ(ω)],where the phase–frequency spectrum ψ(ω) varying within −π < ψ < π is a random function of the frequency ω. Using this amplitude–phase frequency spectrum, we can obtain the electric field E(t) of a broadband laser in the time domain asE(t)=F1[F(ω)],where F1 denotes the inverse Fourier transform of a complex function. Actually, the electric field defined by Eq. (B3) is equivalent to that defined by Eq. (B1) if the number of monochromatic laser beams is chosen as N = TΔω, where T and Δω are the duration and bandwidth of the broadband laser beam, respectively.25
    In general, a broadband laser beam can be modeled as a summation of many monochromatic laser beams that have different carrier frequencies ωi within a given bandwidth Δω as follows:16,22–24E(t)=i=0NEicos(ωit+ψi),where Ei and ωi are respectively the electric field amplitude and frequency of the ith monochromatic laser beam, and ψi is the random phase. If the number of monochromatic laser beams N is chosen arbitrarily, however, the frequency spectrum of the broadband laser electric field modeled in this way will deviate from the initially assumed distribution.25
  • loading
  • [1]
    R. K. Kirkwood, J. D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, P. Michel, D. Hinkel, R. Berger, E. Williams, J. Milovich, L. Yin, H. Rose, B. MacGowan, O. Landen, M. Rosen, and J. Lindl, “A review of laser–plasma interaction physics of indirect-drive fusion,” Plasma Phys. Controlled Fusion 55, 103001 (2013).10.1088/0741-3335/55/10/103001
    [2]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [3]
    Y.-H. Chen, Z. Li, H. Cao, K. Pan, S. Li, X. Xie, B. Deng, Q. Wang, Z. Cao, L. Hou, X. Che, P. Yang, Y. Li, X. He, T. Xu, Y. Liu, Y. Li, X. Liu, H. Zhang, W. Zhang, B. Jiang, J. Xie, W. Zhou, X. Huang, W. Huo, G. Ren, K. Li, X. Hang, S. Li, C. Zhai, J. Liu, S. Zou, Y. Ding, and K. Lan, “Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums,” Matter Radiat. Extremes 7, 065901 (2022).10.1063/5.0102447
    [4]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
    [5]
    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska, M. Krus, F. Wang, D. Yang, S. W. Li, Z. C. Li, Z. Y. Guan, Y. G. Liu, T. Xu, X. S. Peng, X. M. Liu, Y. L. Li, J. Li, T. M. Song, J. M. Yang, S. E. Jiang, B. H. Zhang, W. Y. Huo, G. Ren, Y. H. Chen, W. Zheng, Y. K. Ding, K. Lan, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
    [6]
    J. D. Lindl, P. Amendt, R. L. Berger, S. Gail Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [7]
    Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057 (1984).10.1103/physrevlett.53.1057
    [8]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101
    [9]
    S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715 (1996).10.1364/ol.21.001715
    [10]
    B. J. MacGowan, B. B. Afeyan, C. A. Back, R. L. Berger, G. Bonnaud, M. Casanova, B. I. Cohen, D. E. Desenne, D. F. DuBois, A. G. Dulieu, K. G. Estabrook, J. C. Fernandez, S. H. Glenzer, D. E. Hinkel, T. B. Kaiser, D. H. Kalantar, R. L. Kauffman, R. K. Kirkwood, W. L. Kruer, A. B. Langdon, B. F. Lasinski, D. S. Montgomery, J. D. Moody, D. H. Munro, L. V. Powers, H. A. Rose, C. Rousseaux, R. E. Turner, B. H. Wilde, S. C. Wilks, and E. A. Williams, “Laser–plasma interactions in ignition-scale hohlraum plasmas,” Phys. Plasmas 3, 2029 (1996).10.1063/1.872000
    [11]
    E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, and E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701 (1998).10.1063/1.872957
    [12]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility,” Matter Radiat. Extremes 2, 243 (2017).10.1016/j.mre.2017.07.004
    [13]
    B. Afeyan and S. Hüller, “Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE,” EPJ Web Conf. 59, 05009 (2013).10.1051/epjconf/20135905009
    [14]
    E. S. Dodd and D. Umstadter, “Coherent control of stimulated Raman scattering using chirped laser pulses,” Phys. Plasmas 8, 3531 (2001).10.1063/1.1382820
    [15]
    J. E. Santos, L. O. Silva, and R. Bingham, “White-light parametric instabilities in plasmas,” Phys. Rev. Lett. 98, 235001 (2007).10.1103/physrevlett.98.235001
    [16]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
    [17]
    Y. Zhao, S.-M. Weng, H.-H. Ma, X.-J. Bai, and Z.-M. Sheng, “Mitigation of laser plasma parametric instabilities with broadband lasers,” Rev. Mod. Plasma Phys. 7, 1 (2022).10.1007/s41614-022-00105-0
    [18]
    J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
    [19]
    J. P. Palastro, J. G. Shaw, R. K. Follett, A. Colaïtis, D. Turnbull, A. V. Maximov, V. N. Goncharov, and D. H. Froula, “Resonance absorption of a broadband laser pulse,” Phys. Plasmas 25, 123104 (2018).10.1063/1.5063589
    [20]
    A. N. Mostovych, S. P. Obenschain, J. H. Gardner, J. Grun, K. J. Kearney, C. K. Manka, E. A. McLean, and C. J. Pawley, “Brillouin scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light,” Phys. Rev. Lett. 59, 1193 (1987).10.1103/physrevlett.59.1193
    [21]
    H. Y. Zhou, C. Z. Xiao, D. B. Zou, X. Z. Li, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime,” Phys. Plasmas 25, 062703 (2018).10.1063/1.5030153
    [22]
    R. K. Follett, J. G. Shaw, J. F. Myatt, J. P. Palastro, R. W. Short, and D. H. Froula, “Suppressing two-plasmon decay with laser frequency detuning,” Phys. Rev. Lett. 120, 135005 (2018).10.1103/physrevlett.120.135005
    [23]
    J. W. Bates, J. F. Myatt, J. G. Shaw, R. K. Follett, J. L. Weaver, R. H. Lehmberg, and S. P. Obenschain, “Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E 97, 061202(R) (2018).10.1103/physreve.97.061202
    [24]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [25]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [26]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, and Z. Sheng, “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes 2, 190 (2017).10.1016/j.mre.2017.06.001
    [27]
    Y. Zhao, Z. Sheng, S. Weng, S. Ji, and J. Zhu, “Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma,” High Power Laser Sci. Eng. 7, E20 (2019).10.1017/hpl.2019.5
    [28]
    Y. Zhao, S. Weng, Z. Sheng, and J. Zhu, “Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light,” Plasma Phys. Controlled Fusion 61, 115008 (2019).10.1088/1361-6587/ab4691
    [29]
    H. Y. Zhou, C. Z. Xiao, J. L. Jiao, Y. Lang, N. Zhao, D. Xie, D. B. Zou, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump,” Plasma Phys. Controlled Fusion 61, 105004 (2019).10.1088/1361-6587/ab34ba
    [30]
    B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397 (1985).10.1063/1.865340
    [31]
    C. R. Menyuk, N. M. El-Siragy, and W. M. Manheimer, “Raman sidescattering in laser-produced plasmas,” Phys. Fluids 28, 3409 (1985).10.1063/1.865341
    [32]
    D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558 (1985).10.1103/physrevlett.54.558
    [33]
    P. E. Young and K. G. Estabrook, “Angularly resolved observations of sidescattered laser light from laser-produced plasmas,” Phys. Rev. E 49, 5556 (1994).10.1103/physreve.49.5556
    [34]
    B. I. Cohen, A. N. Kaufman, and K. M. Watson, “Beat heating of a plasma,” Phys. Rev. Lett. 29, 581 (1972).10.1103/physrevlett.29.581
    [35]
    B. I. Cohen, M. A. Mostrom, D. R. Nicholson, A. N. Kaufman, C. E. Max, and A. Bruce Langdon, “Simulation of laser beat heating of a plasma,” Phys. Fluids 18, 470 (1975).10.1063/1.861153
    [36]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, and X. T. He, “Linear theory of multibeam parametric instabilities in homogeneous plasmas,” Phys. Plasmas 26, 062109 (2019).10.1063/1.5096850
    [37]
    W. Kruer, The Physics of Laser Plasma Interactions (CRC Press, 2019).
    [38]
    T. M. Antonsen, Jr. and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Fluids B 5, 1440 (1993).10.1063/1.860884
    [39]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [40]
    L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, “Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves,” Phys. Plasmas 15, 013109 (2008).10.1063/1.2825663
    [41]
    Q. K. Liu, E. H. Zhang, W. S. Zhang, H. B. Cai, Y. Q. Gao, Q. Wang, and S. P. Zhu, “Non-linear stimulated Raman back-scattering burst driven by a broadband laser,” Phys. Plasmas 29, 102105 (2022).10.1063/5.0105089
    [42]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, Y. Zhao, and X. T. He, “On the stimulated Raman sidescattering in inhomogeneous plasmas: Revisit of linear theory and three-dimensional particle-in-cell simulations,” Plasma Phys. Controlled Fusion 60, 025020 (2018).10.1088/1361-6587/aa9b41
    [43]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
    [44]
    G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi, F. Barbato, D. Batani, G. Boutoux, F. DÁmato, J. Dostal, R. Dudzak, E. Filippov, Y. J. Gu, L. Juha, O. Klimo, M. Krus, S. Malko, A. S. Martynenko, P. Nicolai, V. Ospina, S. Pikuz, O. Renner, J. Santos, V. T. Tikhonchuk, J. Trela, S. Viciani, L. Volpe, S. Weber, and L. A. Gizzi, “Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma,” High Power Laser Sci. Eng. 7, E51 (2019).10.1017/hpl.2019.37
    [45]
    Y. Ji, C.-W. Lian, R. Yan, C. Ren, D. Yang, Z.-H. Wan, B. Zhao, C. Wang, Z.-H. Fang, and J. Zheng, “Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime,” Matter Radiat. Extremes 6, 015901 (2021).10.1063/5.0026379
    [46]
    [47]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (40) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return