Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Gong Zheng, Quin Michael J., Bohlen Simon, Keitel Christoph H., Põder Kristjan, Tamburini Matteo. Spin-polarized electron beam generation in the colliding-pulse injection scheme[J]. Matter and Radiation at Extremes, 2023, 8(6): 064005. doi: 10.1063/5.0152382
Citation: Gong Zheng, Quin Michael J., Bohlen Simon, Keitel Christoph H., Põder Kristjan, Tamburini Matteo. Spin-polarized electron beam generation in the colliding-pulse injection scheme[J]. Matter and Radiation at Extremes, 2023, 8(6): 064005. doi: 10.1063/5.0152382

Spin-polarized electron beam generation in the colliding-pulse injection scheme

doi: 10.1063/5.0152382
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gong@mpi-hd.mpg.de
  • Received Date: 2023-03-29
  • Accepted Date: 2023-08-22
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • Employing colliding-pulse injection has been shown to enable the generation of high-quality electron beams from laser–plasma accelerators. Here, by using test particle simulations, Hamiltonian analysis, and multidimensional particle-in-cell simulations, we lay the theoretical framework for spin-polarized electron beam generation in the colliding-pulse injection scheme. Furthermore, we show that this scheme enables the production of quasi-monoenergetic electron beams in excess of 80% polarization and tens of pC charge with commercial 10-TW-class laser systems.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Z.G. carried out the simulations by using FBPIC with the spin dynamics model implemented by M.J.Q. Z.G.performed the analysis with assistance from M.T.. The manuscript was written by Z.G. and M.T, with feedback from S.B. C.H.K. and K.P. M.T. supervised the project. All authors discussed the results presented in the paper.
    Author Contributions
    Zheng Gong: Conceptualization (equal); Data curation (lead); Formal analysis (equal); Investigation (equal); Methodology (lead); Visualization (lead); Writing – original draft (equal); Writing – review & editing (equal). Michael J. Quin: Investigation (supporting); Software (lead); Writing – review & editing (equal). Simon Bohlen: Investigation (supporting); Writing – review & editing (equal). Christoph H. Keitel: Resources (equal); Writing – review & editing (equal). Kristjan Põder: Conceptualization (supporting); Funding acquisition (supporting); Investigation (supporting); Project administration (supporting); Resources (equal); Supervision (supporting); Writing – review & editing (equal). Matteo Tamburini: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Project administration (lead); Resources (equal); Supervision (lead); Writing – original draft (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    The spin of an electron in electric E and magnetic B fields precesses according to the Thomas–Bargmann–Michel–Telegdi (TBMT) equation71,72dsdt=Ω×s,where Ω = ΩT + Ωa, withΩT=|e|mecBγβ1+γ×E,Ωa=ae|e|mecBγ1+γβ(βB)β×E.Here, γ=1+p2/me2c2 is the Lorentz factor of the electron, β = p/γmec is its normalized velocity, and ae ≈ 1.16 × 10−3 is the electron anomalous magnetic moment. Note that Eqs. (A1)–(A3) are specific to electrons through their dependence on the anomalous magnetic moment ae. The leapfrog equation obtained by discretizing Eq. (A1) and with electromagnetic fields En and Bn at step n issn+1/2sn1/2Δt=Ωn×sn.Here, we have used the following definitions of the midpoint spin and momentum:sn=sn+1/2+sn1/22,pn=pn+1/2+pn1/22,γn=1+(pn)2/me2c2.By inserting these quantities into Eq. (A4), one immediately obtains |sn+1/2| = |sn−1/2|. Equation (A4) can be rewritten assn+1/2=s+(h×sn+1/2),where h = ΩnΔt/2 and s′ = sn−1/2 + h × sn−1/2. Now, Eq. (A8) is a linear system of equations in the unknown sn+1/2, whose solution issn+1/2=o[s+(hs)h+h×s],where o = 1/(1 + h2). The same approach discussed above can be employed for advancing the momentum.94
    Following the work described in Refs. 36 and 42, several schemes utilizing pre-polarized plasma generation via laser-induced molecular photodissociation3739 have been proposed.4355 Although not used in the present article, we have implemented in FBPIC not only the electron spin degrees of freedom and their evolution as detailed above, but also the capability to approximately model the initial spin state of electrons ionized from the photodissociation products of hydrogen halide molecules such as HCl. In fact, as with the momentum and position, an initial value for the spin must be provided for all species of particles.
    For molecules such as HCl, which are not considered in this paper, the unpaired outer-shell electron of H and Cl has an initial spin along the propagation axis of the dissociation laser after ionization, whereas the many spin-paired inner-shell electrons must be treated differently. In practice, when an inner-shell electron of Cl is ionized, its initial spin is randomly oriented in space, to account of the fact that no orientation is present for these electrons. Ideally, a more sophisticated model would include quantum mechanical effects when determining the initial spin of each successive electron emitted by ionization, but our simpler approach suffices for capturing the essential dynamics of polarized electrons obtained with the technique of laser-induced molecular photodissociation.
  • loading
  • [1]
    S.-Y. Lee, Accelerator Physics (World Scientific Publishing Company, 2018).
    [2]
    C. Karzmark, R. Loevinger, R. Steele, and M. Weissbluth, “A technique for large-field, superficial electron therapy,” Radiology 74, 633–644 (1960).10.1148/74.4.633
    [3]
    S. M. Qaim, M. Hussain, I. Spahn, and B. Neumaier, “Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: A mini-review,” Front. Phys. 9, 639290 (2021).10.3389/fphy.2021.639290
    [4]
    I. Hofmann, “Review of accelerator driven heavy ion nuclear fusion,” Matter Radiat. Extremes 3, 1–11 (2018).10.1016/j.mre.2017.12.001
    [5]
    S. Möller, Accelerator Technology: Applications in Science, Medicine, and Industry (Springer Nature, 2020).
    [6]
    R. P. Godwin, “Synchrotron radiation as a light source,” in Springer Tracts in Modern Physics: Ergebnisse der exakten Naturwissenschaften (Springer Berlin Heidelberg, Berlin, Heidelberg, 1969), Vol. 51, pp. 1–73.
    [7]
    D. A. Deacon, L. Elias, J. M. Madey, G. Ramian, H. Schwettman, and T. I. Smith, “First operation of a free-electron laser,” Phys. Rev. Lett. 38, 892 (1977).10.1103/physrevlett.38.892
    [8]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1 (2013).10.1103/revmodphys.85.1
    [9]
    W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen et al., “High-order multiphoton Thomson scattering,” Nat. Photonics 11, 514–520 (2017).10.1038/nphoton.2017.100
    [10]
    A. E. Hussein, N. Senabulya, Y. Ma, M. Streeter, B. Kettle, S. J. Dann, F. Albert, N. Bourgeois, S. Cipiccia, J. M. Cole et al., “Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures,” Sci. Rep. 9, 3249 (2019).10.1038/s41598-019-39845-4
    [11]
    B. Kettle, E. Gerstmayr, M. Streeter, F. Albert, R. Baggott, N. Bourgeois, J. Cole, S. Dann, K. Falk et al., “Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source,” Phys. Rev. Lett. 123, 254801 (2019).10.1103/physrevlett.123.254801
    [12]
    W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x
    [13]
    F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, “Higgs boson mass and new physics,” J. High Energy Phys. 2012, 140.10.1007/jhep10(2012)140
    [14]
    T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267
    [15]
    E. Esarey, C. Schroeder, and W. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).10.1103/revmodphys.81.1229
    [16]
    A. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. De Raadt, S. Steinke, J. Bin, S. Bulanov, J. Van Tilborg et al., “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/physrevlett.122.084801
    [17]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
    [18]
    C. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
    [19]
    S. P. Mangles, C. Murphy, Z. Najmudin, A. G. R. Thomas, J. Collier, A. E. Dangor, E. Divall, P. Foster, J. Gallacher, C. Hooker et al., “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
    [20]
    X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai et al., “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).10.1038/ncomms2988
    [21]
    W. Leemans, A. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. Schroeder, C. Tóth, J. Daniels, D. Mittelberger, S. Bulanov et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002
    [22]
    A. R. Maier, N. M. Delbos, T. Eichner, L. Hübner, S. Jalas, L. Jeppe, S. W. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. A. Walker, C. Werle, and P. Winkler, “Decoding sources of energy variability in a laser-plasma accelerator,” Phys. Rev. X 10, 031039 (2020).10.1103/physrevx.10.031039
    [23]
    S. Bohlen, J. C. Wood, T. Brümmer, F. Grüner, C. A. Lindstrøm, M. Meisel, T. Staufer, R. D’Arcy, K. Põder, and J. Osterhoff, “Stability of ionization-injection-based laser-plasma accelerators,” Phys. Rev. Accel. Beams 25, 031301 (2022).10.1103/physrevaccelbeams.25.031301
    [24]
    W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009).10.1063/1.3099645
    [25]
    S. Steinke, J. van Tilborg, C. Benedetti, C. G. R. Geddes, C. B. Schroeder, J. Daniels, K. K. Swanson, A. J. Gonsalves, K. Nakamura, N. H. Matlis, B. H. Shaw, E. Esarey, and W. P. Leemans, “Multistage coupling of independent laser-plasma accelerators,” Nature 530, 190–193 (2016).10.1038/nature16525
    [26]
    E. Gschwendtner and P. Muggli, “Plasma wakefield accelerators,” Nat. Rev. Phys. 1, 246–248 (2019).10.1038/s42254-019-0049-z
    [27]
    G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen et al., “Polarized positrons and electrons at the linear collider,” Phys. Rep. 460, 131–243 (2008).10.1016/j.physrep.2007.12.003
    [28]
    V. Shiltsev and F. Zimmermann, “Modern and future colliders,” Rev. Mod. Phys. 93, 015006 (2021).10.1103/revmodphys.93.015006
    [29]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Theory of radiative electron polarization in strong laser fields,” Phys. Rev. A 98, 023417 (2018).10.1103/physreva.98.023417
    [30]
    Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
    [31]
    Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan, and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).10.1103/physrevlett.123.174801
    [32]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402(R) (2019).10.1103/physreva.100.061402
    [33]
    X. Geng, L. Ji, B. Shen, B. Feng, Z. Guo, Q. Han, C. Qin, N. Wang, W. Wang, Y. Wu et al., “Spin-dependent radiative deflection in the quantum radiation-reaction regime,” New J. Phys. 22, 013007 (2020).10.1088/1367-2630/ab623b
    [34]
    K. Xue, R.-T. Guo, F. Wan, R. Shaisultanov, Y.-Y. Chen, Z.-F. Xu, X.-G. Ren, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process,” Fundam. Res. 2, 539–545 (2022).10.1016/j.fmre.2021.11.022
    [35]
    Y.-F. Li, Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Helicity transfer in strong laser fields via the electron anomalous magnetic moment,” Phys. Rev. Lett. 128, 174801 (2022).10.1103/physrevlett.128.174801
    [36]
    M. Wen, M. Tamburini, and C. H. Keitel, “Polarized laser-wakefield-accelerated kiloampere electron beams,” Phys. Rev. Lett. 122, 214801 (2019).10.1103/physrevlett.122.214801
    [37]
    T. Rakitzis, P. Samartzis, R. Toomes, T. Kitsopoulos, A. Brown, G. Balint-Kurti, O. Vasyutinskii, and J. Beswick, “Spin-polarized hydrogen atoms from molecular photodissociation,” Science 300, 1936–1938 (2003).10.1126/science.1084809
    [38]
    D. Sofikitis, P. Glodic, G. Koumarianou, H. Jiang, L. Bougas, P. C. Samartzis, A. Andreev, and T. P. Rakitzis, “Highly nuclear-spin-polarized deuterium atoms from the UV photodissociation of deuterium iodide,” Phys. Rev. Lett. 118, 233401 (2017).10.1103/physrevlett.118.233401
    [39]
    D. Sofikitis, C. S. Kannis, G. K. Boulogiannis, and T. P. Rakitzis, “Ultrahigh-density spin-polarized H and D observed via magnetization quantum beats,” Phys. Rev. Lett. 121, 083001 (2018).10.1103/physrevlett.121.083001
    [40]
    S. Bohlen, T. Brümmer, F. Grüner, C. A. Lindstrøm, M. Meisel, T. Staufer, M. J. V. Streeter, M. C. Veale, J. C. Wood, R. D’Arcy, K. Põder, and J. Osterhoff, “In situ measurement of electron energy evolution in a laser-plasma accelerator,” Phys. Rev. Lett. 129, 244801 (2022).10.1103/physrevlett.129.244801
    [41]
    L. Drescher, O. Kornilov, T. Witting, V. Shokeen, M. J. J. Vrakking, and B. Schütte, “Extreme-ultraviolet spectral compression by four-wave mixing,” Nat. Photonics 15, 263–266 (2021).10.1038/s41566-020-00758-8
    [42]
    A. Hützen, J. Thomas, J. Böker, R. Engels, R. Gebel, A. Lehrach, A. Pukhov, T. P. Rakitzis, D. Sofikitis, and M. Büscher, “Polarized proton beams from laser-induced plasmas,” High Power Laser Sci. Eng. 7, e16 (2019).10.1017/hpl.2018.73
    [43]
    Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan et al., “Polarized electron-beam acceleration driven by vortex laser pulses,” New J. Phys. 21, 073052 (2019).10.1088/1367-2630/ab2fd7
    [44]
    Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan et al., “Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection,” Phys. Rev. E 100, 043202 (2019).10.1103/physreve.100.043202
    [45]
    M. Büscher, A. Hützen, I. Engin, J. Thomas, A. Pukhov, J. Böker, R. Gebel, A. Lehrach, R. Engels, T. P. Rakitzis, and D. Sofikitis, “Polarized proton beams from a laser-plasma accelerator,” Int. J. Mod. Phys. A 34, 1942028 (2019).10.1142/s0217751x19420284
    [46]
    L. Jin, M. Wen, X. Zhang, A. Hützen, J. Thomas, M. Büscher, and B. Shen, “Spin-polarized proton beam generation from gas-jet targets by intense laser pulses,” Phys. Rev. E 102, 011201 (2020).10.1103/physreve.102.011201
    [47]
    Z. Gong, Y. Shou, Y. Tang, and X. Yan, “Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma,” Phys. Rev. E 102, 053212 (2020).10.1103/physreve.102.053212
    [48]
    J. Thomas, A. Hützen, A. Lehrach, A. Pukhov, L. Ji, Y. Wu, X. Geng, and M. Büscher, “Scaling laws for the depolarization time of relativistic particle beams in strong fields,” Phys. Rev. Accel. Beams 23, 064401 (2020).10.1103/physrevaccelbeams.23.064401
    [49]
    X. Li, P. Gibbon, A. Hützen, M. Büscher, S. Weng, M. Chen, and Z. Sheng, “Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas,” Phys. Rev. E 104, 015216 (2021).10.1103/physreve.104.015216
    [50]
    L. Reichwein, A. Hützen, M. Büscher, and A. Pukhov, “On the robustness of spin polarization for magnetic vortex accelerated proton bunches in density down-ramps,” Plasma Phys. Controlled Fusion 63, 085011 (2021).10.1088/1361-6587/ac0614
    [51]
    L. Reichwein, A. Pukhov, and M. Büscher, “Acceleration of spin-polarized proton beams via two parallel laser pulses,” Phys. Rev. Accel. Beams 25, 081001 (2022).10.1103/physrevaccelbeams.25.081001
    [52]
    L. Reichwein, A. Hützen, M. Büscher, and A. Pukhov, “Spin-polarized particle beams from laser-plasma based accelerators,” J. Phys.: Conf. Ser. 2249, 012018 (2022).10.1088/1742-6596/2249/1/012018
    [53]
    [54]
    H. C. Fan, X. Y. Liu, X. F. Li, J. F. Qu, Q. Yu, Q. Kong, S. M. Weng, M. Chen, M. Büscher, P. Gibbon, S. Kawata, and Z. M. Sheng, “Control of electron beam polarization in the bubble regime of laser-wakefield acceleration,” New J. Phys. 24, 083047 (2022).10.1088/1367-2630/ac8951
    [55]
    X. Yan, Y. Wu, X. Geng, H. Zhang, B. Shen, and L. Ji, “Generation of polarized proton beams with gaseous targets from CO2-laser-driven collisionless shock acceleration,” Phys. Plasmas 29, 053101 (2022).10.1063/5.0084870
    [56]
    R. Hu, H. Zhou, Z. Tao, M. Lv, S. Zou, and Y. Ding, “Spin depolarization induced by self-generated magnetic fields during cylindrical implosions,” Phys. Rev. E 102, 043215 (2020).10.1103/physreve.102.043215
    [57]
    Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W. B. Mori, and C. Joshi, “In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator,” Phys. Rev. Lett. 126, 054801 (2021).10.1103/physrevlett.126.054801
    [58]
    D. Umstadter, J. K. Kim, and E. Dodd, “Laser injection of ultrashort electron pulses into wakefield plasma waves,” Phys. Rev. Lett. 76, 2073–2076 (1996).10.1103/physrevlett.76.2073
    [59]
    E. Esarey, R. Hubbard, W. Leemans, A. Ting, and P. Sprangle, “Electron injection into plasma wakefields by colliding laser pulses,” Phys. Rev. Lett. 79, 2682 (1997).10.1103/physrevlett.79.2682
    [60]
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737–739 (2006).10.1038/nature05393
    [61]
    H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L.-M. Chen et al., “Electron optical injection with head-on and countercrossing colliding laser pulses,” Phys. Rev. Lett. 103, 194803 (2009).10.1103/physrevlett.103.194803
    [62]
    C. Rechatin, J. Faure, A. Ben-Ismaïl, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102, 164801 (2009).10.1103/physrevlett.102.164801
    [63]
    O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, “Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator,” Nat. Phys. 7, 219–222 (2011).10.1038/nphys1872
    [64]
    X. Davoine, E. Lefebvre, C. Rechatin, J. Faure, and V. Malka, “Cold optical injection producing monoenergetic, multi-GeV electron bunches,” Phys. Rev. Lett. 102, 065001 (2009).10.1103/physrevlett.102.065001
    [65]
    V. Malka, J. Faure, C. Rechatin, A. Ben-Ismail, J. K. Lim, X. Davoine, and E. Lefebvre, “Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results,” Phys. Plasmas 16, 056703 (2009).10.1063/1.3079486
    [66]
    M. Hansson, B. Aurand, H. Ekerfelt, A. Persson, and O. Lundh, “Injection of electrons by colliding laser pulses in a laser wakefield accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 99–103 (2016).10.1016/j.nima.2016.02.070
    [67]
    [68]
    R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, “A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm,” Comput. Phys. Commun. 203, 66–82 (2016).10.1016/j.cpc.2016.02.007
    [69]
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [70]
    P. Ehrenfest, “Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik,” Z. Phys. 45, 455–457 (1927).10.1007/bf01329203
    [71]
    L. H. Thomas, “I. The kinematics of an electron with an axis,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 3, 1–22 (1927).10.1080/14786440108564170
    [72]
    V. Bargmann, L. Michel, and V. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2, 435 (1959).10.1103/physrevlett.2.435
    [73]
    J. Vieira, C.-K. Huang, W. Mori, and L. Silva, “Polarized beam conditioning in plasma based acceleration,” Phys. Rev. Spec. Top.-Accel. Beams 14, 071303 (2011).10.1103/physrevstab.14.071303
    [74]
    Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, “Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization,” Phys. Rev. Lett. 127, 165002 (2021).10.1103/physrevlett.127.165002
    [75]
    Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, “Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons,” Phys. Rev. Res. 4, L022024 (2022).10.1103/physrevresearch.4.l022024
    [76]
    Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, “Electron polarization in ultrarelativistic plasma current filamentation instabilities,” Phys. Rev. Lett. 130, 015101 (2023).10.1103/physrevlett.130.015101
    [77]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, “Radiation reaction effects on radiation pressure acceleration,” New J. Phys. 12, 123005 (2010).10.1088/1367-2630/12/12/123005
    [78]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, T. V. Liseykina, and A. Macchi, “Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser–solid interaction,” Nucl. Instrum. Methods Phys. Res., Sect. A 653, 181–185 (2011).10.1016/j.nima.2010.12.056
    [79]
    M. Wen, H. Bauke, and C. H. Keitel, “Identifying the Stern-Gerlach force of classical electron dynamics,” Sci. Rep. 6, 31624 (2016).10.1038/srep31624
    [80]
    M. Wen, C. H. Keitel, and H. Bauke, “Spin-one-half particles in strong electromagnetic fields: Spin effects and radiation reaction,” Phys. Rev. A 95, 042102 (2017).10.1103/physreva.95.042102
    [81]
    A. A. Sokolov and I. M. Ternov, “Synchrotron radiation,” Sov. Phys. J. 10, 39–47 (1967); arXiv: 1010 1971.10.1007/bf00820300
    [82]
    D. Bauer, P. Mulser, and W. H. Steeb, “Relativistic ponderomotive force, uphill acceleration, and transition to chaos,” Phys. Rev. Lett. 75, 4622–4625 (1995).10.1103/physrevlett.75.4622
    [83]
    Z.-M. Sheng, K. Mima, Y. Sentoku, M. Jovanović, T. Taguchi, J. Zhang, and J. Meyer-ter Vehn, “Stochastic heating and acceleration of electrons in colliding laser fields in plasma,” Phys. Rev. Lett. 88, 055004 (2002).10.1103/physrevlett.88.055004
    [84]
    Z. Gong, R. Hu, Y. Shou, B. Qiao, C. Chen, F. Xu, X. He, and X. Yan, “Radiation reaction induced spiral attractors in ultra-intense colliding laser beams,” Matter Radiat. Extremes 1, 308–315 (2016).10.1016/j.mre.2016.10.005
    [85]
    Z. Gong, R. Hu, J. Yu, Y. Shou, A. Arefiev, and X. Yan, “Radiation rebound and quantum splash in electron-laser collisions,” Phys. Rev. Accel. Beams 22, 093401 (2019).10.1103/physrevaccelbeams.22.093401
    [86]
    Z. Gong, F. Mackenroth, X. Yan, and A. Arefiev, “Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field,” Sci. Rep. 9, 17181 (2019).10.1038/s41598-019-53644-x
    [87]
    A. V. Arefiev, G. E. Cochran, D. W. Schumacher, A. P. Robinson, and G. Chen, “Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field,” Phys. Plasmas 22, 013103 (2015).10.1063/1.4905523
    [88]
    E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).10.1063/1.871358
    [89]
    W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. Geddes, E. Esarey, C. Schroeder, and S. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696–699 (2006).10.1038/nphys418
    [90]
    Here the potential φ(ξ) in the Hamiltonian H is obtained from the Ex at y = 0 of the 2D PIC simulation [see the black dashed line in Fig. 6(a)].
    [91]
    [92]
    H. A. Tolhoek, “Electron polarization, theory and experiment,” Rev. Mod. Phys. 28, 277–298 (1956).10.1103/revmodphys.28.277
    [93]
    Jefferson Lab Qweak Collaboration (Qweak Collaboration), “Precision measurement of the weak charge of the proton,” Nature 557, 207–211 (2018).10.1038/s41586-018-0096-0
    [94]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (47) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return