Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Yang Hetian, Wang Jingwei, Luan Shixia, Feng Ke, Wang Wentao, Li Ruxin. Generating a tunable narrow electron beam comb via laser-driven plasma grating[J]. Matter and Radiation at Extremes, 2023, 8(6): 064001. doi: 10.1063/5.0151883
Citation: Yang Hetian, Wang Jingwei, Luan Shixia, Feng Ke, Wang Wentao, Li Ruxin. Generating a tunable narrow electron beam comb via laser-driven plasma grating[J]. Matter and Radiation at Extremes, 2023, 8(6): 064001. doi: 10.1063/5.0151883

Generating a tunable narrow electron beam comb via laser-driven plasma grating

doi: 10.1063/5.0151883
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: sxluan@siom.ac.cn and wwt1980@siom.ac.cn
  • Received Date: 2023-03-25
  • Accepted Date: 2023-08-01
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • We propose a novel approach for generating a high-density, spatially periodic narrow electron beam comb (EBC) from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma. We employ particle-in-cell (PIC) simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma. This overlap results in the formation of a transverse standing wave, leading to a spatially periodic high-density modulation known as a plasma grating. The electron density peak within the grating can reach several times the background plasma density. The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons, resulting in Coulomb expansion and acceleration of the electrons. As a result, some electrons expand into vacuum, forming a periodic narrow EBC with an individual beam width in the nanoscale range. To further explore the formation of the nanoscale EBC, we conduct additional PIC simulations to study the dependence on various laser parameters. Overall, our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Hetian Yang: Data curation (equal); Formal analysis (equal); Investigation (equal). Jingwei Wang: Conceptualization (equal). Shixia Luan: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Supervision (equal); Writing – original draft (lead). Ke Feng: Conceptualization (equal). Wentao Wang: Formal analysis (equal); Supervision (equal); Writing – review & editing (equal). Ruxin Li: Supervision (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    J. F. Federici, “Review of four-wave mixing and phase conjugation in plasmas,” IEEE Trans. Plasma Sci. 19, 549 (1991).10.1109/27.90319
    [2]
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737 (2006).10.1038/nature05393
    [3]
    L. Yang, Z. G. Deng, M. Y. Yu, and X. G. Wang, “High-charge energetic ions generated by intersecting laser pulses,” Phys. Plasmas 23, 083106 (2016).10.1063/1.4960318
    [4]
    L. Yang, Z. Deng, C. Jiang, F. Yang, and R. Ma, “High-charge energetic electron bunch generated by multiple intersecting lasers,” Phys. Plasmas 25, 083102 (2018).10.1063/1.5037755
    [5]
    J. Elle, T. Z. Zhao, Y. Ma, K. Behm, A. Lucero, A. Maksimchuk, J. A. Nees, A. G. R. Thomas, A. Schmitt-Sody, and K. Krushelnick, “Multi-electron beam generation using co-propagating, parallel laser beams,” New J. Phys. 20, 093021 (2018).10.1088/1367-2630/aaded4
    [6]
    R. Lehe, A. F. Lifschitz, X. Davoine, C. Thaury, and V. Malka, “Optical transverse injection in laser-plasma acceleration,” Phys. Rev. Lett. 111, 085005 (2013).10.1103/physrevlett.111.085005
    [7]
    L. Reichwein, A. Pukhov, and M. Buscher, “Acceleration of spin-polarized proton beams via two parallel laser pulses,” Phys. Rev. Accel. Beams 25, 081001 (2022).10.1103/physrevaccelbeams.25.081001
    [8]
    Y. X. Zhang, S. Rykovanov, M. Shi, C. L. Zhong, X. T. He, B. Qiao, and M. Zepf, “Giant isolated attosecond pulses from two-color laser-plasma interactions,” Phys. Rev. Lett. 124, 114802 (2020).10.1103/physrevlett.124.114802
    [9]
    L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios,” Phys. Rev. Lett. 119, 235001 (2017).10.1103/physrevlett.119.235001
    [10]
    Z. Zhang, Y. Chen, M. Chen, Z. Zhang, J. Yu, Z. Sheng, and J. Zhang, “Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air,” Phys. Rev. Lett. 117, 243901 (2016).10.1103/physrevlett.117.243901
    [11]
    Z. M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673 (2003).10.1007/s00340-003-1324-2
    [12]
    S.-X. Luan, Q.-J. Zhang, and W.-L. Gui, “Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas,” Acta Phys. Sin. 57, 7030 (2008).10.7498/aps.57.7030
    [13]
    H. H. Ma, S. M. Weng, P. Li, X. F. Li, Y. X. Wang, S. H. Yew, M. Chen, P. McKenna, and Z. M. Sheng, “Growth, saturation, and collapse of laser-driven plasma density gratings,” Phys. Plasmas 27, 073105 (2020).10.1063/5.0004529
    [14]
    G. Lehmann and K. H. Spatschek, “Reflection and transmission properties of a finite-length electron plasma grating,” Matter Radiat. Extremes 7, 054402 (2022).10.1063/5.0096386
    [15]
    Z. H. Wu, Y. L. Zuo, X. M. Zeng, Z. L. Li, Z. M. Zhang, X. D. Wang, B. L. Hu, X. Wang, J. Mu, J. Q. Su, Q. H. Zhu, and Y. P. Dai, “Laser compression via fast-extending plasma gratings,” Matter Radiat. Extremes 7, 064402 (2022).10.1063/5.0109574
    [16]
    H. C. Wu, Z. M. Sheng, Q. J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 113103 (2005).10.1063/1.2126587
    [17]
    H. C. Wu, Z. M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).10.1063/1.2132074
    [18]
    A. D. Lad, Y. Mishima, P. K. Singh, B. Y. Li, A. Adak, G. Chatterjee, P. Brijesh, M. Dalui, M. Inoue, J. Jha, S. Tata, M. Trivikram, M. Krishnamurthy, M. Chen, Z. M. Sheng, K. A. Tanaka, G. R. Kumar, and H. Habara, “Luminous, relativistic, directional electron bunches from an intense laser driven grating plasma,” Sci. Rep. 12, 16818 (2022).10.1038/s41598-022-21210-7
    [19]
    L. P. Shi, W. X. Li, Y. D. Wang, X. Lu, L. E. Ding, and H. P. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107, 095004 (2011).10.1103/physrevlett.107.095004
    [20]
    Q. Chen, D. Maslarova, J. Z. Wang, S. X. Lee, V. Horny, and D. Umstadter, “Transient relativistic plasma grating to tailor high-power laser fields, wakefield plasma waves, and electron injection,” Phys. Rev. Lett. 128, 164801 (2022).10.1103/physrevlett.128.164801
    [21]
    H. Xu, W. W. Chang, H. B. Zhuo, L. H. Cao, and Z. W. Yue, “Parallel programming of 2 1/2-dimensional pic under distributed-memory parallel environments,” Chin. J. Comput. Phys 19, 305 (2002).10.3969/j.issn.1001-246X.2002.04.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (98) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return