Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Huo Zihao, Duan Defang, Ma Tiancheng, Zhang Zihan, Jiang Qiwen, An Decheng, Song Hao, Tian Fubo, Cui Tian. First-principles study on the conventional superconductivity of N-doped fcc-LuH3[J]. Matter and Radiation at Extremes, 2023, 8(3): 038402. doi: 10.1063/5.0151844
Citation: Huo Zihao, Duan Defang, Ma Tiancheng, Zhang Zihan, Jiang Qiwen, An Decheng, Song Hao, Tian Fubo, Cui Tian. First-principles study on the conventional superconductivity of N-doped fcc-LuH3[J]. Matter and Radiation at Extremes, 2023, 8(3): 038402. doi: 10.1063/5.0151844

First-principles study on the conventional superconductivity of N-doped fcc-LuH3

doi: 10.1063/5.0151844
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: duandf@jlu.edu.cn and cuitian@nbu.edu.cn
  • Received Date: 2023-03-25
  • Accepted Date: 2023-04-17
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615 , 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3−δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.
  • loading
  • [1]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57 (2020).10.1146/annurev-conmatphys-031218-013413
    [2]
    D. Duan, Y. Liu, Y. Ma, Z. Shao, B. Liu, and T. Cui, “Structure and superconductivity of hydrides at high pressures,” Natl. Sci. Rev. 4, 121 (2017).10.1093/nsr/nww029
    [3]
    X. Zhang, Y. Zhao, F. Li, and G. Yang, “Pressure-induced hydride superconductors above 200 K,” Matter Radiat. Extremes 6, 068201 (2021).10.1063/5.0065287
    [4]
    H.-K. Mao, “Hydrogen and related matter in the pressure dimension,” Matter Radiat. Extremes 7, 063001 (2022).10.1063/5.0130627
    [5]
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
    [6]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
    [7]
    M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, “Crystal structure of the superconducting phase of sulfur hydride,” Nat. Phys. 12, 835 (2016).10.1038/nphys3760
    [8]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [9]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
    [10]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [11]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [12]
    X. Li, X. Huang, D. Duan, C. J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y. Huang, Q. Zhou, B. Liu, and T. Cui, “Polyhydride CeH9 with an atomic-like hydrogen clathrate structure,” Nat. Commun. 10, 3461 (2019).10.1038/s41467-019-11330-6
    [13]
    F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, “Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures,” Chin. Phys. Lett. 37, 107401 (2020).10.1088/0256-307x/37/10/107401
    [14]
    H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
    [15]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [16]
    Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/PhysRevLett.128.047001
    [17]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
    [18]
    M. Du, H. Song, Z. Zhang, D. Duan, and T. Cui, “Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure,” Research 2022, 9784309.10.34133/2022/9784309
    [19]
    H. Song, Z. Zhang, T. Cui, C. J. Pickard, V. Z. Kresin, and D. Duan, “High Tc superconductivity in heavy rare earth hydrides,” Chin. Phys. Lett. 38, 107401 (2021).10.1088/0256-307x/38/10/107401
    [20]
    M. Shao, S. Chen, W. Chen, K. Zhang, X. Huang, and T. Cui, “Superconducting ScH3 and LuH3 at megabar pressures,” Inorg. Chem. 60, 15330 (2021).10.1021/acs.inorgchem.1c01960
    [21]
    Z. Li, X. He, C. Zhang, K. Lu, B. Bin, J. Zhang, S. Zhang, J. Zhao, L. Shi, S. Feng, X. Wang, Y. Peng, R. Yu, L. Wang, Y. Li, J. Bass, V. Prakapenka, S. Chariton, H. Liu, and C. Jin, “Superconductivity above 70 K experimentally discovered in lutetium polyhydride,” Sci. China Phys. Mech 66, 267411 (2023).
    [22]
    N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S. E. Dissanayake, K. V. Lawler, A. Salamat, and R. P. Dias, “Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 615, 244 (2023).10.1038/s41586-023-05742-0
    [23]
    P. Shan, N. Wang, X. Zheng, Q. Qiu, Y. Peng, and J. Cheng, “Pressure-induced color change in the lutetium dihydride LuH2,” Chin. Phys. Lett. 40, 046101 (2023).10.1088/0256-307x/40/4/046101
    [24]
    [25]
    [26]
    F. Xie, T. Lu, Z. Yu, Y. Wang, Z. Wang, S. Meng, and M. Liu, “Lu-H-N phase diagram from first-principles calculations,” Chin. Phys. Lett 40, 057401 (2023) 057401.
    [27]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.: Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201
    [28]
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14, 2717 (2002).10.1088/0953-8984/14/11/301
    [29]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/PhysRevB.50.17953
    [30]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).10.1103/physrevb.59.1758
    [31]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 (1996).10.1016/0927-0256(96)00008-0
    [32]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
    [33]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [34]
    P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905 (1975).10.1103/physrevb.12.905
    [35]
    P. Morel and P. W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” Phys. Rev. 125, 1263 (1962).10.1103/physrev.125.1263
    [36]
    J. E. Bonnet and J. N. Daou, “Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation,” J. Appl. Phys. 48, 964 (1977).10.1063/1.323717
    [37]
    M. Mansmann and W. E. Wallace, “The structure of HoD3,” J. Phys. France 25, 454 (1964).10.1051/jphys:01964002505045400
    [38]
    W. Klemm and G. Winkelmann, “Zur kenntnis der nitride der seltenen erdmetalle,” Z. Anorg. Allg. Chem. 288, 87 (1956).10.1002/zaac.19562880112
    [39]
    R. Boese, N. Niederprüm, D. Bläser, A. Maulitz, M. Y. Antipin, and P. R. Mallinson, “Single-crystal structure and electron density distribution of ammonia at 160 K on the basis of X-ray diffraction data,” J. Phys. Chem. B 101, 5794 (1997).10.1021/jp970580v
    [40]
    Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, and F. Oba, “Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis,” Nat. Commun. 7, 11962 (2016).10.1038/ncomms11962
    [41]
    Y. Wu, P. Lazic, G. Hautier, K. Persson, and G. Ceder, “First principles high throughput screening of oxynitrides for water-splitting photocatalysts,” Energy Environ. Sci. 6, 157 (2013).10.1039/c2ee23482c
    [42]
    T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3),” Solid State Commun. 133, 481 (2005).10.1016/j.ssc.2004.11.036
    [43]
    W. L. McMillan, “Transition temperature of strong-coupled superconductors,” Phys. Rev. 167, 331 (1968).10.1103/physrev.167.331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (91) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return