Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Dornheim Tobias, Moldabekov Zhandos A., Tolias Panagiotis, Böhme Maximilian, Vorberger Jan. Physical insights from imaginary-time density–density correlation functions[J]. Matter and Radiation at Extremes, 2023, 8(5): 056601. doi: 10.1063/5.0149638
Citation: Dornheim Tobias, Moldabekov Zhandos A., Tolias Panagiotis, Böhme Maximilian, Vorberger Jan. Physical insights from imaginary-time density–density correlation functions[J]. Matter and Radiation at Extremes, 2023, 8(5): 056601. doi: 10.1063/5.0149638

Physical insights from imaginary-time density–density correlation functions

doi: 10.1063/5.0149638
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: t.dornheim@hzdr.de
  • Received Date: 2023-03-07
  • Accepted Date: 2023-07-11
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • An accurate theoretical description of the dynamic properties of correlated quantum many-body systems, such as the dynamic structure factor S( q , ω), is important in many fields. Unfortunately, highly accurate quantum Monte Carlo methods are usually restricted to the imaginary time domain, and the analytic continuation of the imaginary-time density–density correlation function F( q , τ) to real frequencies is a notoriously hard problem. Here, it is argued that often no such analytic continuation is required because by definition, F( q , τ) contains the same physical information as does S( q , ω), only represented unfamiliarly. Specifically, it is shown how one can directly extract key information such as the temperature or quasi-particle excitation energies from the τ domain, which is highly relevant for equation-of-state measurements of matter under extreme conditions [T. Dornheim et al., Nat. Commun. 13 , 7911 (2022)]. As a practical example, ab initio path-integral Monte Carlo results for the uniform electron gas (UEG) are considered, and it is shown that even nontrivial processes such as the roton feature of the UEG at low density [T. Dornheim et al., Commun. Phys. 5 , 304 (2022)] are manifested straightforwardly in F( q , τ). A comprehensive overview is given of various useful properties of F( q , τ) and how it relates to the usual dynamic structure factor. In fact, working directly in the τ domain is advantageous for many reasons and opens up multiple avenues for future applications.
  • loading
  • [1]
    G. D. Mahan, Many-Particle Physics, Physics of Solids and Liquids (Springer, 1990).
    [2]
    D. Pines and D. Bohm, “Collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev. 85, 338 (1952).10.1103/physrev.85.338
    [3]
    M. Bonitz, Quantum Kinetic Theory (Springer, Heidelberg, 2016).
    [4]
    G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008).
    [5]
    A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, Bose-Einstein Condensation (Cambridge University Press, 1996).
    [6]
    V. I. Yukalov, “Basics of Bose-Einstein condensation,” Phys. Part. Nucl. 42, 460–513 (2011).10.1134/s1063779611030063
    [7]
    R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897–923 (2015).10.1103/revmodphys.87.897
    [8]
    A. Pribram-Jones, D. A. Gross, and K. Burke, “DFT: A theory full of holes?,” Annu. Rev. Phys. Chem. 66, 283–304 (2015).10.1146/annurev-physchem-040214-121420
    [9]
    D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67, 279 (1995).10.1103/revmodphys.67.279
    [10]
    W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo simulations of solids,” Rev. Mod. Phys. 73, 33–83 (2001).10.1103/revmodphys.73.33
    [11]
    J. B. Anderson, Quantum Monte Carlo: Origins, Development, Applications (Oxford University Press, 2007).
    [12]
    G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, “Towards an exact description of electronic wavefunctions in real solids,” Nature 493, 365–370 (2013).10.1038/nature11770
    [13]
    M. F. Herman, E. J. Bruskin, and B. J. Berne, “On path integral Monte Carlo simulations,” J. Chem. Phys. 76, 5150–5155 (1982).10.1063/1.442815
    [14]
    T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, A. Cangi, and J. Vorberger, “Electronic density response of warm dense matter,” Phys. Plasmas 30, 032705 (2023).10.1063/5.0138955
    [15]
    W. Nolting and W. D. Brewer, Fundamentals of Many-Body Physics: Principles and Methods (Springer, Heidelberg, 2009).
    [16]
    V. Bobrov, S. Trigger, and D. Litinski, “Universality of the phonon–roton spectrum in liquids and superfluidity of 4He,” Z. Naturforsch. A 71, 565–575 (2016).10.1515/zna-2015-0397
    [17]
    H. Godfrin, M. Meschke, H.-J. Lauter, A. Sultan, H. M. Böhm, E. Krotscheck, and M. Panholzer, “Observation of a roton collective mode in a two-dimensional Fermi liquid,” Nature 483, 576–579 (2012).10.1038/nature10919
    [18]
    T. Dornheim, Z. A. Moldabekov, J. Vorberger, and B. Militzer, “Path integral Monte Carlo approach to the structural properties and collective excitations of liquid 3He without fixed nodes,” Sci. Rep. 12, 708 (2022).10.1038/s41598-021-04355-9
    [19]
    T. Dornheim, Z. A. Moldabekov, J. Vorberger, H. Kählert, and M. Bonitz, “Electronic pair alignment and roton feature in the warm dense electron gas,” Commun. Phys. 5, 304 (2022).10.1038/s42005-022-01078-9
    [20]
    G. J. Kalman, P. Hartmann, K. I. Golden, A. Filinov, and Z. Donkó, “Correlational origin of the roton minimum,” Europhys. Lett. 90, 55002 (2010).10.1209/0295-5075/90/55002
    [21]
    V. E. Fortov, “Extreme states of matter on Earth and in space,” Phys.-Usp. 52, 615–647 (2009).10.3367/ufne.0179.200906h.0653
    [22]
    R. P. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, Graduate Texts in Physics (Springer International Publishing, 2018).
    [23]
    Frontiers and Challenges in Warm Dense Matter, edited by F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey (Springer International Publishing, 2014).
    [24]
    A. Benuzzi-Mounaix, S. Mazevet, A. Ravasio, T. Vinci, A. Denoeud, M. Koenig, N. Amadou, E. Brambrink, F. Festa, A. Levy, M. Harmand, S. Brygoo, G. Huser, V. Recoules, J. Bouchet, G. Morard, F. Guyot, T. . d. Resseguier, K. Myanishi, N. Ozaki, F. Dorchies, J. Gaudin, P. M. Leguay, O. Peyrusse, O. Henry, D. Raffestin, S. L. Pape, R. Smith, and R. Musella, “Progress in warm dense matter study with applications to planetology,” Phys. Scr. T161, 014060 (2014).10.1088/0031-8949/2014/t161/014060
    [25]
    S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109
    [26]
    S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
    [27]
    D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger, and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Controlled Fusion 61, 014015 (2019).10.1088/1361-6587/aadd6c
    [28]
    T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. R. Preston, Z. A. Moldabekov, and J. Vorberger, “Accurate temperature diagnostics for matter under extreme conditions,” Nat. Commun. 13, 7911 (2022).10.1038/s41467-022-35578-7
    [29]
    T. Dornheim, M. P. Böhme, D. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi, T. Döppner, and J. Vorberger, “Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data,” Phys. Plasmas 30, 042707 (2023).10.1063/5.0139560
    [30]
    M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and A. Rubio, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012).
    [31]
    T. Dornheim, S. Groth, A. V. Filinov, and M. Bonitz, “Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties,” J. Chem. Phys. 151, 014108 (2019).10.1063/1.5093171
    [32]
    M. Jarrell and J. E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Phys. Rep. 269, 133–195 (1996).10.1016/0370-1573(95)00074-7
    [33]
    M. Boninsegni and D. M. Ceperley, “Density fluctuations in liquid 4He. Path integrals and maximum entropy,” J. Low Temp. Phys. 104, 339–357 (1996).10.1007/bf00751861
    [34]
    A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V. Svistunov, “Diagrammatic quantum Monte Carlo study of the Fröhlich polaron,” Phys. Rev. B 62, 6317–6336 (2000).10.1103/physrevb.62.6317
    [35]
    E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, “Ab initio low-energy dynamics of superfluid and solid 4He,” Phys. Rev. B 82, 174510 (2010).10.1103/physrevb.82.174510
    [36]
    A. W. Sandvik, “Constrained sampling method for analytic continuation,” Phys. Rev. E 94, 063308 (2016).10.1103/physreve.94.063308
    [37]
    J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, “Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data,” Phys. Rev. E 95, 061302 (2017).10.1103/physreve.95.061302
    [38]
    O. Goulko, A. S. Mishchenko, L. Pollet, N. Prokof’ev, and B. Svistunov, “Numerical analytic continuation: Answers to well-posed questions,” Phys. Rev. B 95, 014102 (2017).10.1103/physrevb.95.014102
    [39]
    Y. Kora and M. Boninsegni, “Dynamic structure factor of superfluid 4He from quantum Monte Carlo: Maximum entropy revisited,” Phys. Rev. B 98, 134509 (2018).10.1103/physrevb.98.134509
    [40]
    H. Yoon, J.-H. Sim, and M. J. Han, “Analytic continuation via domain knowledge free machine learning,” Phys. Rev. B 98, 245101 (2018).10.1103/physrevb.98.245101
    [41]
    T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018).10.1103/physrevlett.121.255001
    [42]
    S. Groth, T. Dornheim, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).10.1103/physrevb.99.235122
    [43]
    R. Fournier, L. Wang, O. V. Yazyev, and Q.S. Wu, “Artificial neural network approach to the analytic continuation problem,” Phys. Rev. Lett. 124, 056401 (2020).10.1103/physrevlett.124.056401
    [44]
    N. S. Nichols, P. Sokol, and A. Del Maestro, “Parameter-free differential evolution algorithm for the analytic continuation of imaginary time correlation functions,” Phys. Rev. E 106, 025312 (2022).10.1103/physreve.106.025312
    [45]
    J. Schött, E. G. C. P. van Loon, I. L. M. Locht, M. I. Katsnelson, and I. Di Marco, “Comparison between methods of analytical continuation for bosonic functions,” Phys. Rev. B 94, 245140 (2016).10.1103/physrevb.94.245140
    [46]
    T. Dornheim, J. Vorberger, Z. A. Moldabekov, and M. Böhme, “Analysing the dynamic structure of warm dense matter in the imaginary-time domain: Theoretical models and simulations,” Philos. Trans. R. Soc. A 381, 20220217 (2023).10.1098/rsta.2022.0217
    [47]
    J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier Science, 2010).
    [48]
    J. Chihara, “Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons,” J. Phys. F: Met. Phys. 17, 295–304 (1987).10.1088/0305-4608/17/2/002
    [49]
    [50]
    T. Dornheim, D. C. Wicaksono, J. E. Suarez-Cardona, P. Tolias, M. P. Böhme, Z. A. Moldabekov, M. Hecht, and J. Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023).10.1103/physrevb.107.155148
    [51]
    P.-F. Loos and P. M. W. Gill, “The uniform electron gas,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 410–429 (2016).10.1002/wcms.1257
    [52]
    T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Rep. 744, 1–86 (2018).10.1016/j.physrep.2018.04.001
    [53]
    M. Takahashi and M. Imada, “Monte Carlo calculation of quantum systems,” J. Phys. Soc. Jpn. 53, 963–974 (1984).10.1143/jpsj.53.963
    [54]
    M. Baus and J.-P. Hansen, “Statistical mechanics of simple Coulomb systems,” Phys. Rep. 59, 1–94 (1980).10.1016/0370-1573(80)90022-8
    [55]
    F. Lucco Castello and P. Tolias, “Bridge functions of classical one-component plasmas,” Phys. Rev. E 105, 015208 (2022).10.1103/physreve.105.015208
    [56]
    L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53, 1814–1832 (1996).10.1103/physrevb.53.1814
    [57]
    T. Ott, H. Thomsen, J. W. Abraham, T. Dornheim, and M. Bonitz, “Recent progress in the theory and simulation of strongly correlated plasmas: Phase transitions, transport, quantum, and magnetic field effects,” The European Physical Journal D 72, 84 (2018).10.1140/epjd/e2018-80385-7
    [58]
    E. Wigner, “On the interaction of electrons in metals,” Phys. Rev. 46, 1002–1011 (1934).10.1103/physrev.46.1002
    [59]
    M. D. Jones and D. M. Ceperley, “Crystallization of the one-component plasma at finite temperature,” Phys. Rev. Lett. 76, 4572–4575 (1996).10.1103/physrevlett.76.4572
    [60]
    N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler, and R. J. Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals,” Phys. Rev. B 69, 085116 (2004).10.1103/physrevb.69.085116
    [61]
    S. Azadi and N. D. Drummond, “Low-density phase diagram of the three-dimensional electron gas,” Phys. Rev. B 105, 245135 (2022).10.1103/physrevb.105.245135
    [62]
    T. Dornheim, J. Vorberger, Z. A. Moldabekov, G. Röpke, and W.-D. Kraeft, “The uniform electron gas at high temperatures: Ab initio path integral Monte Carlo simulations and analytical theory,” High Energy Density Phys. 45, 101015 (2022).10.1016/j.hedp.2022.101015
    [63]
    J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).10.1103/physrevb.23.5048
    [64]
    J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).10.1103/physrevb.45.13244
    [65]
    M. Corradini, R. Del Sole, G. Onida, and M. Palummo, “Analytical expressions for the local-field factor g(q) and the exchange-correlation kernel Kxc(r) of the homogeneous electron gas,” Phys. Rev. B 57, 14569 (1998).10.1103/physrevb.57.14569
    [66]
    S. Groth, T. Dornheim, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001
    [67]
    V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014).10.1103/physrevlett.112.076403
    [68]
    T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Z. A. Moldabekov, and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys. 151, 194104 (2019).10.1063/1.5123013
    [69]
    S. Moroni, D. M. Ceperley, and G. Senatore, “Static response and local field factor of the electron gas,” Phys. Rev. Lett. 75, 689 (1995).10.1103/physrevlett.75.689
    [70]
    D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).10.1103/physrevlett.45.566
    [71]
    G. G. Spink, R. J. Needs, and N. D. Drummond, “Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas,” Phys. Rev. B 88, 085121 (2013).10.1103/physrevb.88.085121
    [72]
    T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit,” Phys. Rev. Lett. 117, 156403 (2016).10.1103/physrevlett.117.156403
    [73]
    T. Dornheim, J. Vorberger, and M. Bonitz, “Nonlinear electronic density response in warm dense matter,” Phys. Rev. Lett. 125, 085001 (2020).10.1103/physrevlett.125.085001
    [74]
    E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, “Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas,” Phys. Rev. Lett. 110, 146405 (2013).10.1103/physrevlett.110.146405
    [75]
    F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd, “Accurate exchange-correlation energies for the warm dense electron gas,” Phys. Rev. Lett. 117, 115701 (2016).10.1103/physrevlett.117.115701
    [76]
    T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio thermodynamic results for the degenerate electron gas at finite temperature,” Phys. Rev. Lett. 115, 130402 (2015).10.1103/physrevlett.115.130402
    [77]
    L. D. Fosdick and H. F. Jordan, “Path-integral calculation of the two-particle slater sum for He4,” Phys. Rev. 143, 58–66 (1966).10.1103/physrev.143.58
    [78]
    K. Sakkos, J. Casulleras, and J. Boronat, “High order chin actions in path integral Monte Carlo,” J. Chem. Phys. 130, 204109 (2009).10.1063/1.3143522
    [79]
    L. Brualla, K. Sakkos, J. Boronat, and J. Casulleras, “Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo,” J. Chem. Phys. 121, 636–643 (2004).10.1063/1.1760512
    [80]
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, EBL-Schweitzer (World Scientific, 2009).
    [81]
    H. De Raedt and B. De Raedt, “Applications of the generalized Trotter formula,” Phys. Rev. A 28, 3575–3580 (1983).10.1103/physreva.28.3575
    [82]
    T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas,” J. Chem. Phys. 155, 054110 (2021).10.1063/5.0058988
    [83]
    D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74, 4078–4095 (1981).10.1063/1.441588
    [84]
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).10.1063/1.1699114
    [85]
    T. Dornheim, M. Böhme, B. Militzer, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes,” Phys. Rev. B 103, 205142 (2021).10.1103/physrevb.103.205142
    [86]
    M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,” Phys. Rev. E 74, 036701 (2006).10.1103/physreve.74.036701
    [87]
    M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm for continuous-space path integral Monte Carlo simulations,” Phys. Rev. Lett. 96, 070601 (2006).10.1103/physrevlett.96.070601
    [88]
    M. Troyer and U. J. Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201 (2005).10.1103/physrevlett.94.170201
    [89]
    E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, “Sign problem in the numerical simulation of many-electron systems,” Phys. Rev. B 41, 9301–9307 (1990).10.1103/physrevb.41.9301
    [90]
    T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307
    [91]
    D. M. Ceperley, “Fermion nodes,” J. Stat. Phys. 63, 1237–1267 (1991).10.1007/bf01030009
    [92]
    T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, “Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New J. Phys. 17, 073017 (2015).10.1088/1367-2630/17/7/073017
    [93]
    A. Yilmaz, K. Hunger, T. Dornheim, S. Groth, and M. Bonitz, “Restricted configuration path integral Monte Carlo,” J. Chem. Phys. 153, 124114 (2020).10.1063/5.0022800
    [94]
    T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg, “Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration,” J. Chem. Phys. 153, 234104 (2020).10.1063/5.0030760
    [95]
    Y. Xiong and H. Xiong, “On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem,” J. Chem. Phys. 157, 094112 (2022).10.1063/5.0106067
    [96]
    D. Thirumalai and B. J. Berne, “On the calculation of time correlation functions in quantum systems: Path integral techniques,” J. Chem. Phys. 79, 5029–5033 (1983).10.1063/1.445597
    [97]
    S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97, 076404 (2006).10.1103/physrevlett.97.076404
    [98]
    T. Dornheim, S. Groth, and M. Bonitz, “Ab initio results for the static structure factor of the warm dense electron gas,” Contrib. Plasma Phys. 57, 468–478 (2017).10.1002/ctpp.201700096
    [99]
    M. Holzmann, R. C. Clay, M. A. Morales, N. M. Tubman, D. M. Ceperley, and C. Pierleoni, “Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids,” Phys. Rev. B 94, 035126 (2016).10.1103/physrevb.94.035126
    [100]
    A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys. 12, 35 (1975).10.1007/bf01024183
    [101]
    K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Phys. Rev. 176, 589 (1968).10.1103/physrev.176.589
    [102]
    S. Tanaka and S. Ichimaru, “Thermodynamics and correlational properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” J. Phys. Soc. Jpn. 55, 2278–2289 (1986).10.1143/jpsj.55.2278
    [103]
    T. Sjostrom and J. Dufty, “Uniform electron gas at finite temperatures,” Phys. Rev. B 88, 115123 (2013).10.1103/physrevb.88.115123
    [104]
    S. Tanaka, “Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation,” J. Chem. Phys. 145, 214104 (2016).10.1063/1.4969071
    [105]
    P. Vashishta and K. S. Singwi, “Electron correlations at metallic densities. V,” Phys. Rev. B 6, 875 (1972).10.1103/physrevb.6.875
    [106]
    H. K. Schweng and H. M. Böhm, “Finite-temperature electron correlations in the framework of a dynamic local-field correction,” Phys. Rev. B 48, 2037 (1993).10.1103/physrevb.48.2037
    [107]
    A. Holas and S. Rahman, “Dynamic local-field factor of an electron liquid in the quantum versions of the Singwi-Tosi-Land-Sjölander and Vashishta-Singwi theories,” Phys. Rev. B 35, 2720 (1987).10.1103/physrevb.35.2720
    [108]
    F. Lucco Castello, P. Tolias, and T. Dornheim, “Classical bridge functions in classical and quantum plasma liquids,” Europhys. Lett. 138, 44003 (2022).10.1209/0295-5075/ac7166
    [109]
    P. Tolias, F. Lucco Castello, and T. Dornheim, “Integral equation theory based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 155, 134115 (2021).10.1063/5.0065988
    [110]
    P. Tolias, F. Lucco Castello, and T. Dornheim, “Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 158, 141102 (2023).10.1063/5.0145687
    [111]
    C. Bowen, G. Sugiyama, and B. J. Alder, “Static dielectric response of the electron gas,” Phys. Rev. B 50, 14838 (1994).10.1103/physrevb.50.14838
    [112]
    N. Mihara and R. D. Puff, “Liquid structure factor of ground-state He4,” Phys. Rev. 174, 221–227 (1968).10.1103/physrev.174.221
    [113]
    A. W. Sandvik, S. Capponi, D. Poilblanc, and E. Dagotto, “Numerical calculations of the B1g Raman spectrum of the two-dimensional Heisenberg model,” Phys. Rev. B 57, 8478–8493 (1998).10.1103/physrevb.57.8478
    [114]
    A. Filinov and M. Bonitz, “Collective and single-particle excitations in two-dimensional dipolar Bose gases,” Phys. Rev. A 86, 043628 (2012).10.1103/physreva.86.043628
    [115]
    A. Filinov, “Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition,” Phys. Rev. A 94, 013603 (2016).10.1103/physreva.94.013603
    [116]
    I. M. Tkachenko, Y. V. Arkhipov, and A. Adil, The Method of Moments and Its Applications in Plasma Physics (Akademikerverlag, Saarbrücken, Germany, 2012).
    [117]
    A. V. Filinov, J. Ara, and I. M. Tkachenko, “Dynamical response in strongly coupled uniform electron liquids: Observation of plasmon-roton coexistence using nine sum rules, Shannon information entropy, and path-integral Monte Carlo simulations,” Phys. Rev. B 107, 195143 (2023).10.1103/physrevb.107.195143
    [118]
    R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons (Cambridge University Press, 2016).
    [119]
    R. Thiele, T. Bornath, C. Fortmann, A. Höll, R. Redmer, H. Reinholz, G. Röpke, A. Wierling, S. H. Glenzer, and G. Gregori, “Plasmon resonance in warm dense matter,” Phys. Rev. E 78, 026411 (2008).10.1103/physreve.78.026411
    [120]
    S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W.-D. Kraeft, and R. Redmer, “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).10.1103/physrevlett.98.065002
    [121]
    T. R. Preston, K. Appel, E. Brambrink, B. Chen, L. B. Fletcher, C. Fortmann-Grote, S. H. Glenzer, E. Granados, S. Göde, Z. Konôpková, H. J. Lee, H. Marquardt, E. E. McBride, B. Nagler, M. Nakatsutsumi, P. Sperling, B. B. L. Witte, and U. Zastrau, “Measurements of the momentum-dependence of plasmonic excitations in matter around 1 mbar using an X-ray free electron laser,” Appl. Phys. Lett. 114, 014101 (2019).10.1063/1.5070140
    [122]
    P. Hamann, J. Vorberger, T. Dornheim, Z. A. Moldabekov, and M. Bonitz, “Ab initio results for the plasmon dispersion and damping of the warm dense electron gas,” Contrib. Plasma Phys. 60, e202000147 (2020).10.1002/ctpp.202000147
    [123]
    T. Döppner, O. L. Landen, H. J. Lee, P. Neumayer, S. P. Regan, and S. H. Glenzer, “Temperature measurement through detailed balance in x-ray Thomson scattering,” High Energy Density Phys. 5, 182–186 (2009).10.1016/j.hedp.2009.05.012
    [124]
    M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L. B. Fletcher, S. H. Glenzer, and R. Redmer, “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Phys. Rev. E 107, 065207 (2023).10.1103/physreve.107.065207
    [125]
    T. Dornheim, T. Sjostrom, S. Tanaka, and J. Vorberger, “Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories,” Phys. Rev. B 101, 045129 (2020).10.1103/physrevb.101.045129
    [126]
    T. Dornheim, P. Tolias, Z. A. Moldabekov, A. Cangi, and J. Vorberger, “Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations,” J. Chem. Phys. 156, 244113 (2022).10.1063/5.0097768
    [127]
    T. Dornheim, P. Tolias, Z. A. Moldabekov, and J. Vorberger, “Energy response and spatial alignment of the perturbed electron gas,” J. Chem. Phys. 158, 164108 (2023).10.1063/5.0146503
    [128]
    K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53
    [129]
    K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, P. Tzeferacos, and J. F. Benage, “Equation of state measurements of warm dense carbon using laser-driven shock and release technique,” Phys. Rev. Lett. 112, 155003 (2014).10.1103/physrevlett.112.155003
    [130]
    K. Falk, S. P. Regan, J. Vorberger, M. A. Barrios, T. R. Boehly, D. E. Fratanduono, S. H. Glenzer, D. G. Hicks, S. X. Hu, C. D. Murphy, P. B. Radha, S. Rothman, A. P. Jephcoat, J. S. Wark, D. O. Gericke, and G. Gregori, “Self-consistent measurement of the equation of state of liquid deuterium,” High Energy Density Phys. 8, 76–80 (2012).10.1016/j.hedp.2011.11.006
    [131]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [132]
    T. Tschentscher, C. Bressler, J. Grünert, A. Madsen, A. P. Mancuso, M. Meyer, A. Scherz, H. Sinn, and U. Zastrau, “Photon beam transport and scientific instruments at the European XFEL,” Appl. Sci. 7, 592 (2017).10.3390/app7060592
    [133]
    M. Böhme, Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Static electronic density response of warm dense hydrogen: Ab initio path integral Monte Carlo simulations,” Phys. Rev. Lett. 129, 066402 (2022).10.1103/physrevlett.129.066402
    [134]
    Z. A. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and T. Dornheim, “Ab initio static exchange–correlation kernel across jacob’s ladder without functional derivatives,” J. Chem. Theory Comput. 19, 1286–1299 (2023).10.1021/acs.jctc.2c01180
    [135]
    M. Panholzer, M. Gatti, and L. Reining, “Nonlocal and nonadiabatic effects in the charge-density response of solids: A time-dependent density-functional approach,” Phys. Rev. Lett. 120, 166402 (2018).10.1103/physrevlett.120.166402
    [136]
    A. D. Kaplan, N. K. Nepal, A. Ruzsinszky, P. Ballone, and J. P. Perdew, “First-principles wave-vector- and frequency-dependent exchange-correlation kernel for jellium at all densities,” Phys. Rev. B 105, 035123 (2022).10.1103/physrevb.105.035123
    [137]
    S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, “Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory,” Phys. Rev. B 69, 155112 (2004).10.1103/physrevb.69.155112
    [138]
    K. Ramakrishna and J. Vorberger, “Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon,” J. Phys.: Condens. Matter 32, 095401 (2019).10.1088/1361-648x/ab558e
    [139]
    C. Flamant, G. Kolesov, E. Manousakis, and E. Kaxiras, “Imaginary-time time-dependent density functional theory and its application for robust convergence of electronic states,” J. Chem. Theory Comput. 15, 6036–6045 (2019).10.1021/acs.jctc.9b00617
    [140]
    T. Dornheim, J. Vorberger, and Z. A. Moldabekov, “Nonlinear density response and higher order correlation functions in warm dense matter,” J. Phys. Soc. Jpn. 90, 104002 (2021).10.7566/jpsj.90.104002
    [141]
    T. Dornheim, M. Böhme, Z. A. Moldabekov, J. Vorberger, and M. Bonitz, “Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics,” Phys. Rev. Res. 3, 033231 (2021).10.1103/physrevresearch.3.033231
    [142]
    Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Density functional theory perspective on the nonlinear response of correlated electrons across temperature regimes,” J. Chem. Theory Comput. 18, 2900–2912 (2022).10.1021/acs.jctc.2c00012
    [143]
    P. Tolias, T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Unravelling the nonlinear ideal density response of many-body systems,” Europhys. Lett. 142, 44001 (2023).10.1209/0295-5075/acd3a6
    [144]
    Z. A. Moldabekov, T. Dornheim, and A. Cangi, “Thermal excitation signals in the inhomogeneous warm dense electron gas,” Sci. Rep. 12, 1093 (2022).10.1038/s41598-022-05034-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (45) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return