Citation: | Dornheim Tobias, Moldabekov Zhandos A., Tolias Panagiotis, Böhme Maximilian, Vorberger Jan. Physical insights from imaginary-time density–density correlation functions[J]. Matter and Radiation at Extremes, 2023, 8(5): 056601. doi: 10.1063/5.0149638 |
[1] |
G. D. Mahan, Many-Particle Physics, Physics of Solids and Liquids (Springer, 1990).
|
[2] |
D. Pines and D. Bohm, “Collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev. 85, 338 (1952).10.1103/physrev.85.338
|
[3] |
M. Bonitz, Quantum Kinetic Theory (Springer, Heidelberg, 2016).
|
[4] |
G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008).
|
[5] |
A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, Bose-Einstein Condensation (Cambridge University Press, 1996).
|
[6] |
V. I. Yukalov, “Basics of Bose-Einstein condensation,” Phys. Part. Nucl. 42, 460–513 (2011).10.1134/s1063779611030063
|
[7] |
R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897–923 (2015).10.1103/revmodphys.87.897
|
[8] |
A. Pribram-Jones, D. A. Gross, and K. Burke, “DFT: A theory full of holes?,” Annu. Rev. Phys. Chem. 66, 283–304 (2015).10.1146/annurev-physchem-040214-121420
|
[9] |
D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67, 279 (1995).10.1103/revmodphys.67.279
|
[10] |
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo simulations of solids,” Rev. Mod. Phys. 73, 33–83 (2001).10.1103/revmodphys.73.33
|
[11] |
J. B. Anderson, Quantum Monte Carlo: Origins, Development, Applications (Oxford University Press, 2007).
|
[12] |
G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, “Towards an exact description of electronic wavefunctions in real solids,” Nature 493, 365–370 (2013).10.1038/nature11770
|
[13] |
M. F. Herman, E. J. Bruskin, and B. J. Berne, “On path integral Monte Carlo simulations,” J. Chem. Phys. 76, 5150–5155 (1982).10.1063/1.442815
|
[14] |
T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, A. Cangi, and J. Vorberger, “Electronic density response of warm dense matter,” Phys. Plasmas 30, 032705 (2023).10.1063/5.0138955
|
[15] |
W. Nolting and W. D. Brewer, Fundamentals of Many-Body Physics: Principles and Methods (Springer, Heidelberg, 2009).
|
[16] |
V. Bobrov, S. Trigger, and D. Litinski, “Universality of the phonon–roton spectrum in liquids and superfluidity of 4He,” Z. Naturforsch. A 71, 565–575 (2016).10.1515/zna-2015-0397
|
[17] |
H. Godfrin, M. Meschke, H.-J. Lauter, A. Sultan, H. M. Böhm, E. Krotscheck, and M. Panholzer, “Observation of a roton collective mode in a two-dimensional Fermi liquid,” Nature 483, 576–579 (2012).10.1038/nature10919
|
[18] |
T. Dornheim, Z. A. Moldabekov, J. Vorberger, and B. Militzer, “Path integral Monte Carlo approach to the structural properties and collective excitations of liquid 3He without fixed nodes,” Sci. Rep. 12, 708 (2022).10.1038/s41598-021-04355-9
|
[19] |
T. Dornheim, Z. A. Moldabekov, J. Vorberger, H. Kählert, and M. Bonitz, “Electronic pair alignment and roton feature in the warm dense electron gas,” Commun. Phys. 5, 304 (2022).10.1038/s42005-022-01078-9
|
[20] |
G. J. Kalman, P. Hartmann, K. I. Golden, A. Filinov, and Z. Donkó, “Correlational origin of the roton minimum,” Europhys. Lett. 90, 55002 (2010).10.1209/0295-5075/90/55002
|
[21] |
V. E. Fortov, “Extreme states of matter on Earth and in space,” Phys.-Usp. 52, 615–647 (2009).10.3367/ufne.0179.200906h.0653
|
[22] |
R. P. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, Graduate Texts in Physics (Springer International Publishing, 2018).
|
[23] |
Frontiers and Challenges in Warm Dense Matter, edited by F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey (Springer International Publishing, 2014).
|
[24] |
A. Benuzzi-Mounaix, S. Mazevet, A. Ravasio, T. Vinci, A. Denoeud, M. Koenig, N. Amadou, E. Brambrink, F. Festa, A. Levy, M. Harmand, S. Brygoo, G. Huser, V. Recoules, J. Bouchet, G. Morard, F. Guyot, T. . d. Resseguier, K. Myanishi, N. Ozaki, F. Dorchies, J. Gaudin, P. M. Leguay, O. Peyrusse, O. Henry, D. Raffestin, S. L. Pape, R. Smith, and R. Musella, “Progress in warm dense matter study with applications to planetology,” Phys. Scr. T161, 014060 (2014).10.1088/0031-8949/2014/t161/014060
|
[25] |
S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109
|
[26] |
S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
|
[27] |
D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger, and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Controlled Fusion 61, 014015 (2019).10.1088/1361-6587/aadd6c
|
[28] |
T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. R. Preston, Z. A. Moldabekov, and J. Vorberger, “Accurate temperature diagnostics for matter under extreme conditions,” Nat. Commun. 13, 7911 (2022).10.1038/s41467-022-35578-7
|
[29] |
T. Dornheim, M. P. Böhme, D. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi, T. Döppner, and J. Vorberger, “Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data,” Phys. Plasmas 30, 042707 (2023).10.1063/5.0139560
|
[30] |
M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and A. Rubio, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012).
|
[31] |
T. Dornheim, S. Groth, A. V. Filinov, and M. Bonitz, “Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties,” J. Chem. Phys. 151, 014108 (2019).10.1063/1.5093171
|
[32] |
M. Jarrell and J. E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Phys. Rep. 269, 133–195 (1996).10.1016/0370-1573(95)00074-7
|
[33] |
M. Boninsegni and D. M. Ceperley, “Density fluctuations in liquid 4He. Path integrals and maximum entropy,” J. Low Temp. Phys. 104, 339–357 (1996).10.1007/bf00751861
|
[34] |
A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V. Svistunov, “Diagrammatic quantum Monte Carlo study of the Fröhlich polaron,” Phys. Rev. B 62, 6317–6336 (2000).10.1103/physrevb.62.6317
|
[35] |
E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, “Ab initio low-energy dynamics of superfluid and solid 4He,” Phys. Rev. B 82, 174510 (2010).10.1103/physrevb.82.174510
|
[36] |
A. W. Sandvik, “Constrained sampling method for analytic continuation,” Phys. Rev. E 94, 063308 (2016).10.1103/physreve.94.063308
|
[37] |
J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, “Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data,” Phys. Rev. E 95, 061302 (2017).10.1103/physreve.95.061302
|
[38] |
O. Goulko, A. S. Mishchenko, L. Pollet, N. Prokof’ev, and B. Svistunov, “Numerical analytic continuation: Answers to well-posed questions,” Phys. Rev. B 95, 014102 (2017).10.1103/physrevb.95.014102
|
[39] |
Y. Kora and M. Boninsegni, “Dynamic structure factor of superfluid 4He from quantum Monte Carlo: Maximum entropy revisited,” Phys. Rev. B 98, 134509 (2018).10.1103/physrevb.98.134509
|
[40] |
H. Yoon, J.-H. Sim, and M. J. Han, “Analytic continuation via domain knowledge free machine learning,” Phys. Rev. B 98, 245101 (2018).10.1103/physrevb.98.245101
|
[41] |
T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018).10.1103/physrevlett.121.255001
|
[42] |
S. Groth, T. Dornheim, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).10.1103/physrevb.99.235122
|
[43] |
R. Fournier, L. Wang, O. V. Yazyev, and Q.S. Wu, “Artificial neural network approach to the analytic continuation problem,” Phys. Rev. Lett. 124, 056401 (2020).10.1103/physrevlett.124.056401
|
[44] |
N. S. Nichols, P. Sokol, and A. Del Maestro, “Parameter-free differential evolution algorithm for the analytic continuation of imaginary time correlation functions,” Phys. Rev. E 106, 025312 (2022).10.1103/physreve.106.025312
|
[45] |
J. Schött, E. G. C. P. van Loon, I. L. M. Locht, M. I. Katsnelson, and I. Di Marco, “Comparison between methods of analytical continuation for bosonic functions,” Phys. Rev. B 94, 245140 (2016).10.1103/physrevb.94.245140
|
[46] |
T. Dornheim, J. Vorberger, Z. A. Moldabekov, and M. Böhme, “Analysing the dynamic structure of warm dense matter in the imaginary-time domain: Theoretical models and simulations,” Philos. Trans. R. Soc. A 381, 20220217 (2023).10.1098/rsta.2022.0217
|
[47] |
J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier Science, 2010).
|
[48] |
J. Chihara, “Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons,” J. Phys. F: Met. Phys. 17, 295–304 (1987).10.1088/0305-4608/17/2/002
|
[49] | |
[50] |
T. Dornheim, D. C. Wicaksono, J. E. Suarez-Cardona, P. Tolias, M. P. Böhme, Z. A. Moldabekov, M. Hecht, and J. Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023).10.1103/physrevb.107.155148
|
[51] |
P.-F. Loos and P. M. W. Gill, “The uniform electron gas,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 410–429 (2016).10.1002/wcms.1257
|
[52] |
T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Rep. 744, 1–86 (2018).10.1016/j.physrep.2018.04.001
|
[53] |
M. Takahashi and M. Imada, “Monte Carlo calculation of quantum systems,” J. Phys. Soc. Jpn. 53, 963–974 (1984).10.1143/jpsj.53.963
|
[54] |
M. Baus and J.-P. Hansen, “Statistical mechanics of simple Coulomb systems,” Phys. Rep. 59, 1–94 (1980).10.1016/0370-1573(80)90022-8
|
[55] |
F. Lucco Castello and P. Tolias, “Bridge functions of classical one-component plasmas,” Phys. Rev. E 105, 015208 (2022).10.1103/physreve.105.015208
|
[56] |
L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53, 1814–1832 (1996).10.1103/physrevb.53.1814
|
[57] |
T. Ott, H. Thomsen, J. W. Abraham, T. Dornheim, and M. Bonitz, “Recent progress in the theory and simulation of strongly correlated plasmas: Phase transitions, transport, quantum, and magnetic field effects,” The European Physical Journal D 72, 84 (2018).10.1140/epjd/e2018-80385-7
|
[58] |
E. Wigner, “On the interaction of electrons in metals,” Phys. Rev. 46, 1002–1011 (1934).10.1103/physrev.46.1002
|
[59] |
M. D. Jones and D. M. Ceperley, “Crystallization of the one-component plasma at finite temperature,” Phys. Rev. Lett. 76, 4572–4575 (1996).10.1103/physrevlett.76.4572
|
[60] |
N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler, and R. J. Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals,” Phys. Rev. B 69, 085116 (2004).10.1103/physrevb.69.085116
|
[61] |
S. Azadi and N. D. Drummond, “Low-density phase diagram of the three-dimensional electron gas,” Phys. Rev. B 105, 245135 (2022).10.1103/physrevb.105.245135
|
[62] |
T. Dornheim, J. Vorberger, Z. A. Moldabekov, G. Röpke, and W.-D. Kraeft, “The uniform electron gas at high temperatures: Ab initio path integral Monte Carlo simulations and analytical theory,” High Energy Density Phys. 45, 101015 (2022).10.1016/j.hedp.2022.101015
|
[63] |
J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).10.1103/physrevb.23.5048
|
[64] |
J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).10.1103/physrevb.45.13244
|
[65] |
M. Corradini, R. Del Sole, G. Onida, and M. Palummo, “Analytical expressions for the local-field factor g(q) and the exchange-correlation kernel Kxc(r) of the homogeneous electron gas,” Phys. Rev. B 57, 14569 (1998).10.1103/physrevb.57.14569
|
[66] |
S. Groth, T. Dornheim, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001
|
[67] |
V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014).10.1103/physrevlett.112.076403
|
[68] |
T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Z. A. Moldabekov, and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys. 151, 194104 (2019).10.1063/1.5123013
|
[69] |
S. Moroni, D. M. Ceperley, and G. Senatore, “Static response and local field factor of the electron gas,” Phys. Rev. Lett. 75, 689 (1995).10.1103/physrevlett.75.689
|
[70] |
D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).10.1103/physrevlett.45.566
|
[71] |
G. G. Spink, R. J. Needs, and N. D. Drummond, “Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas,” Phys. Rev. B 88, 085121 (2013).10.1103/physrevb.88.085121
|
[72] |
T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit,” Phys. Rev. Lett. 117, 156403 (2016).10.1103/physrevlett.117.156403
|
[73] |
T. Dornheim, J. Vorberger, and M. Bonitz, “Nonlinear electronic density response in warm dense matter,” Phys. Rev. Lett. 125, 085001 (2020).10.1103/physrevlett.125.085001
|
[74] |
E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, “Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas,” Phys. Rev. Lett. 110, 146405 (2013).10.1103/physrevlett.110.146405
|
[75] |
F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd, “Accurate exchange-correlation energies for the warm dense electron gas,” Phys. Rev. Lett. 117, 115701 (2016).10.1103/physrevlett.117.115701
|
[76] |
T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio thermodynamic results for the degenerate electron gas at finite temperature,” Phys. Rev. Lett. 115, 130402 (2015).10.1103/physrevlett.115.130402
|
[77] |
L. D. Fosdick and H. F. Jordan, “Path-integral calculation of the two-particle slater sum for He4,” Phys. Rev. 143, 58–66 (1966).10.1103/physrev.143.58
|
[78] |
K. Sakkos, J. Casulleras, and J. Boronat, “High order chin actions in path integral Monte Carlo,” J. Chem. Phys. 130, 204109 (2009).10.1063/1.3143522
|
[79] |
L. Brualla, K. Sakkos, J. Boronat, and J. Casulleras, “Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo,” J. Chem. Phys. 121, 636–643 (2004).10.1063/1.1760512
|
[80] |
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, EBL-Schweitzer (World Scientific, 2009).
|
[81] |
H. De Raedt and B. De Raedt, “Applications of the generalized Trotter formula,” Phys. Rev. A 28, 3575–3580 (1983).10.1103/physreva.28.3575
|
[82] |
T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas,” J. Chem. Phys. 155, 054110 (2021).10.1063/5.0058988
|
[83] |
D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74, 4078–4095 (1981).10.1063/1.441588
|
[84] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).10.1063/1.1699114
|
[85] |
T. Dornheim, M. Böhme, B. Militzer, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes,” Phys. Rev. B 103, 205142 (2021).10.1103/physrevb.103.205142
|
[86] |
M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,” Phys. Rev. E 74, 036701 (2006).10.1103/physreve.74.036701
|
[87] |
M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm for continuous-space path integral Monte Carlo simulations,” Phys. Rev. Lett. 96, 070601 (2006).10.1103/physrevlett.96.070601
|
[88] |
M. Troyer and U. J. Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201 (2005).10.1103/physrevlett.94.170201
|
[89] |
E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, “Sign problem in the numerical simulation of many-electron systems,” Phys. Rev. B 41, 9301–9307 (1990).10.1103/physrevb.41.9301
|
[90] |
T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307
|
[91] |
D. M. Ceperley, “Fermion nodes,” J. Stat. Phys. 63, 1237–1267 (1991).10.1007/bf01030009
|
[92] |
T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, “Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New J. Phys. 17, 073017 (2015).10.1088/1367-2630/17/7/073017
|
[93] |
A. Yilmaz, K. Hunger, T. Dornheim, S. Groth, and M. Bonitz, “Restricted configuration path integral Monte Carlo,” J. Chem. Phys. 153, 124114 (2020).10.1063/5.0022800
|
[94] |
T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg, “Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration,” J. Chem. Phys. 153, 234104 (2020).10.1063/5.0030760
|
[95] |
Y. Xiong and H. Xiong, “On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem,” J. Chem. Phys. 157, 094112 (2022).10.1063/5.0106067
|
[96] |
D. Thirumalai and B. J. Berne, “On the calculation of time correlation functions in quantum systems: Path integral techniques,” J. Chem. Phys. 79, 5029–5033 (1983).10.1063/1.445597
|
[97] |
S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97, 076404 (2006).10.1103/physrevlett.97.076404
|
[98] |
T. Dornheim, S. Groth, and M. Bonitz, “Ab initio results for the static structure factor of the warm dense electron gas,” Contrib. Plasma Phys. 57, 468–478 (2017).10.1002/ctpp.201700096
|
[99] |
M. Holzmann, R. C. Clay, M. A. Morales, N. M. Tubman, D. M. Ceperley, and C. Pierleoni, “Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids,” Phys. Rev. B 94, 035126 (2016).10.1103/physrevb.94.035126
|
[100] |
A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys. 12, 35 (1975).10.1007/bf01024183
|
[101] |
K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Phys. Rev. 176, 589 (1968).10.1103/physrev.176.589
|
[102] |
S. Tanaka and S. Ichimaru, “Thermodynamics and correlational properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” J. Phys. Soc. Jpn. 55, 2278–2289 (1986).10.1143/jpsj.55.2278
|
[103] |
T. Sjostrom and J. Dufty, “Uniform electron gas at finite temperatures,” Phys. Rev. B 88, 115123 (2013).10.1103/physrevb.88.115123
|
[104] |
S. Tanaka, “Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation,” J. Chem. Phys. 145, 214104 (2016).10.1063/1.4969071
|
[105] |
P. Vashishta and K. S. Singwi, “Electron correlations at metallic densities. V,” Phys. Rev. B 6, 875 (1972).10.1103/physrevb.6.875
|
[106] |
H. K. Schweng and H. M. Böhm, “Finite-temperature electron correlations in the framework of a dynamic local-field correction,” Phys. Rev. B 48, 2037 (1993).10.1103/physrevb.48.2037
|
[107] |
A. Holas and S. Rahman, “Dynamic local-field factor of an electron liquid in the quantum versions of the Singwi-Tosi-Land-Sjölander and Vashishta-Singwi theories,” Phys. Rev. B 35, 2720 (1987).10.1103/physrevb.35.2720
|
[108] |
F. Lucco Castello, P. Tolias, and T. Dornheim, “Classical bridge functions in classical and quantum plasma liquids,” Europhys. Lett. 138, 44003 (2022).10.1209/0295-5075/ac7166
|
[109] |
P. Tolias, F. Lucco Castello, and T. Dornheim, “Integral equation theory based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 155, 134115 (2021).10.1063/5.0065988
|
[110] |
P. Tolias, F. Lucco Castello, and T. Dornheim, “Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 158, 141102 (2023).10.1063/5.0145687
|
[111] |
C. Bowen, G. Sugiyama, and B. J. Alder, “Static dielectric response of the electron gas,” Phys. Rev. B 50, 14838 (1994).10.1103/physrevb.50.14838
|
[112] |
N. Mihara and R. D. Puff, “Liquid structure factor of ground-state He4,” Phys. Rev. 174, 221–227 (1968).10.1103/physrev.174.221
|
[113] |
A. W. Sandvik, S. Capponi, D. Poilblanc, and E. Dagotto, “Numerical calculations of the B1g Raman spectrum of the two-dimensional Heisenberg model,” Phys. Rev. B 57, 8478–8493 (1998).10.1103/physrevb.57.8478
|
[114] |
A. Filinov and M. Bonitz, “Collective and single-particle excitations in two-dimensional dipolar Bose gases,” Phys. Rev. A 86, 043628 (2012).10.1103/physreva.86.043628
|
[115] |
A. Filinov, “Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition,” Phys. Rev. A 94, 013603 (2016).10.1103/physreva.94.013603
|
[116] |
I. M. Tkachenko, Y. V. Arkhipov, and A. Adil, The Method of Moments and Its Applications in Plasma Physics (Akademikerverlag, Saarbrücken, Germany, 2012).
|
[117] |
A. V. Filinov, J. Ara, and I. M. Tkachenko, “Dynamical response in strongly coupled uniform electron liquids: Observation of plasmon-roton coexistence using nine sum rules, Shannon information entropy, and path-integral Monte Carlo simulations,” Phys. Rev. B 107, 195143 (2023).10.1103/physrevb.107.195143
|
[118] |
R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons (Cambridge University Press, 2016).
|
[119] |
R. Thiele, T. Bornath, C. Fortmann, A. Höll, R. Redmer, H. Reinholz, G. Röpke, A. Wierling, S. H. Glenzer, and G. Gregori, “Plasmon resonance in warm dense matter,” Phys. Rev. E 78, 026411 (2008).10.1103/physreve.78.026411
|
[120] |
S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W.-D. Kraeft, and R. Redmer, “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).10.1103/physrevlett.98.065002
|
[121] |
T. R. Preston, K. Appel, E. Brambrink, B. Chen, L. B. Fletcher, C. Fortmann-Grote, S. H. Glenzer, E. Granados, S. Göde, Z. Konôpková, H. J. Lee, H. Marquardt, E. E. McBride, B. Nagler, M. Nakatsutsumi, P. Sperling, B. B. L. Witte, and U. Zastrau, “Measurements of the momentum-dependence of plasmonic excitations in matter around 1 mbar using an X-ray free electron laser,” Appl. Phys. Lett. 114, 014101 (2019).10.1063/1.5070140
|
[122] |
P. Hamann, J. Vorberger, T. Dornheim, Z. A. Moldabekov, and M. Bonitz, “Ab initio results for the plasmon dispersion and damping of the warm dense electron gas,” Contrib. Plasma Phys. 60, e202000147 (2020).10.1002/ctpp.202000147
|
[123] |
T. Döppner, O. L. Landen, H. J. Lee, P. Neumayer, S. P. Regan, and S. H. Glenzer, “Temperature measurement through detailed balance in x-ray Thomson scattering,” High Energy Density Phys. 5, 182–186 (2009).10.1016/j.hedp.2009.05.012
|
[124] |
M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L. B. Fletcher, S. H. Glenzer, and R. Redmer, “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Phys. Rev. E 107, 065207 (2023).10.1103/physreve.107.065207
|
[125] |
T. Dornheim, T. Sjostrom, S. Tanaka, and J. Vorberger, “Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories,” Phys. Rev. B 101, 045129 (2020).10.1103/physrevb.101.045129
|
[126] |
T. Dornheim, P. Tolias, Z. A. Moldabekov, A. Cangi, and J. Vorberger, “Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations,” J. Chem. Phys. 156, 244113 (2022).10.1063/5.0097768
|
[127] |
T. Dornheim, P. Tolias, Z. A. Moldabekov, and J. Vorberger, “Energy response and spatial alignment of the perturbed electron gas,” J. Chem. Phys. 158, 164108 (2023).10.1063/5.0146503
|
[128] |
K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53
|
[129] |
K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, P. Tzeferacos, and J. F. Benage, “Equation of state measurements of warm dense carbon using laser-driven shock and release technique,” Phys. Rev. Lett. 112, 155003 (2014).10.1103/physrevlett.112.155003
|
[130] |
K. Falk, S. P. Regan, J. Vorberger, M. A. Barrios, T. R. Boehly, D. E. Fratanduono, S. H. Glenzer, D. G. Hicks, S. X. Hu, C. D. Murphy, P. B. Radha, S. Rothman, A. P. Jephcoat, J. S. Wark, D. O. Gericke, and G. Gregori, “Self-consistent measurement of the equation of state of liquid deuterium,” High Energy Density Phys. 8, 76–80 (2012).10.1016/j.hedp.2011.11.006
|
[131] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
|
[132] |
T. Tschentscher, C. Bressler, J. Grünert, A. Madsen, A. P. Mancuso, M. Meyer, A. Scherz, H. Sinn, and U. Zastrau, “Photon beam transport and scientific instruments at the European XFEL,” Appl. Sci. 7, 592 (2017).10.3390/app7060592
|
[133] |
M. Böhme, Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Static electronic density response of warm dense hydrogen: Ab initio path integral Monte Carlo simulations,” Phys. Rev. Lett. 129, 066402 (2022).10.1103/physrevlett.129.066402
|
[134] |
Z. A. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and T. Dornheim, “Ab initio static exchange–correlation kernel across jacob’s ladder without functional derivatives,” J. Chem. Theory Comput. 19, 1286–1299 (2023).10.1021/acs.jctc.2c01180
|
[135] |
M. Panholzer, M. Gatti, and L. Reining, “Nonlocal and nonadiabatic effects in the charge-density response of solids: A time-dependent density-functional approach,” Phys. Rev. Lett. 120, 166402 (2018).10.1103/physrevlett.120.166402
|
[136] |
A. D. Kaplan, N. K. Nepal, A. Ruzsinszky, P. Ballone, and J. P. Perdew, “First-principles wave-vector- and frequency-dependent exchange-correlation kernel for jellium at all densities,” Phys. Rev. B 105, 035123 (2022).10.1103/physrevb.105.035123
|
[137] |
S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, “Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory,” Phys. Rev. B 69, 155112 (2004).10.1103/physrevb.69.155112
|
[138] |
K. Ramakrishna and J. Vorberger, “Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon,” J. Phys.: Condens. Matter 32, 095401 (2019).10.1088/1361-648x/ab558e
|
[139] |
C. Flamant, G. Kolesov, E. Manousakis, and E. Kaxiras, “Imaginary-time time-dependent density functional theory and its application for robust convergence of electronic states,” J. Chem. Theory Comput. 15, 6036–6045 (2019).10.1021/acs.jctc.9b00617
|
[140] |
T. Dornheim, J. Vorberger, and Z. A. Moldabekov, “Nonlinear density response and higher order correlation functions in warm dense matter,” J. Phys. Soc. Jpn. 90, 104002 (2021).10.7566/jpsj.90.104002
|
[141] |
T. Dornheim, M. Böhme, Z. A. Moldabekov, J. Vorberger, and M. Bonitz, “Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics,” Phys. Rev. Res. 3, 033231 (2021).10.1103/physrevresearch.3.033231
|
[142] |
Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Density functional theory perspective on the nonlinear response of correlated electrons across temperature regimes,” J. Chem. Theory Comput. 18, 2900–2912 (2022).10.1021/acs.jctc.2c00012
|
[143] |
P. Tolias, T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Unravelling the nonlinear ideal density response of many-body systems,” Europhys. Lett. 142, 44001 (2023).10.1209/0295-5075/acd3a6
|
[144] |
Z. A. Moldabekov, T. Dornheim, and A. Cangi, “Thermal excitation signals in the inhomogeneous warm dense electron gas,” Sci. Rep. 12, 1093 (2022).10.1038/s41598-022-05034-z
|