| Citation: | Dornheim Tobias, Moldabekov Zhandos A., Tolias Panagiotis, Böhme Maximilian, Vorberger Jan. Physical insights from imaginary-time density–density correlation functions[J]. Matter and Radiation at Extremes, 2023, 8(5): 056601. doi: 10.1063/5.0149638 | 
	                | [1] | 
					 G. D. Mahan, Many-Particle Physics, Physics of Solids and Liquids (Springer, 1990). 
						
					 | 
			
| [2] | 
					 D. Pines and D. Bohm, “Collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev. 85, 338 (1952).10.1103/physrev.85.338 
						
					 | 
			
| [3] | 
					 M. Bonitz, Quantum Kinetic Theory (Springer, Heidelberg, 2016). 
						
					 | 
			
| [4] | 
					 G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008). 
						
					 | 
			
| [5] | 
					 A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, Bose-Einstein Condensation (Cambridge University Press, 1996). 
						
					 | 
			
| [6] | 
					 V. I. Yukalov, “Basics of Bose-Einstein condensation,” Phys. Part. Nucl. 42, 460–513 (2011).10.1134/s1063779611030063 
						
					 | 
			
| [7] | 
					 R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897–923 (2015).10.1103/revmodphys.87.897 
						
					 | 
			
| [8] | 
					 A. Pribram-Jones, D. A. Gross, and K. Burke, “DFT: A theory full of holes?,” Annu. Rev. Phys. Chem. 66, 283–304 (2015).10.1146/annurev-physchem-040214-121420 
						
					 | 
			
| [9] | 
					 D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67, 279 (1995).10.1103/revmodphys.67.279 
						
					 | 
			
| [10] | 
					 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo simulations of solids,” Rev. Mod. Phys. 73, 33–83 (2001).10.1103/revmodphys.73.33 
						
					 | 
			
| [11] | 
					 J. B. Anderson, Quantum Monte Carlo: Origins, Development, Applications (Oxford University Press, 2007). 
						
					 | 
			
| [12] | 
					 G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, “Towards an exact description of electronic wavefunctions in real solids,” Nature 493, 365–370 (2013).10.1038/nature11770 
						
					 | 
			
| [13] | 
					 M. F. Herman, E. J. Bruskin, and B. J. Berne, “On path integral Monte Carlo simulations,” J. Chem. Phys. 76, 5150–5155 (1982).10.1063/1.442815 
						
					 | 
			
| [14] | 
					 T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, A. Cangi, and J. Vorberger, “Electronic density response of warm dense matter,” Phys. Plasmas 30, 032705 (2023).10.1063/5.0138955 
						
					 | 
			
| [15] | 
					 W. Nolting and W. D. Brewer, Fundamentals of Many-Body Physics: Principles and Methods (Springer, Heidelberg, 2009). 
						
					 | 
			
| [16] | 
					 V. Bobrov, S. Trigger, and D. Litinski, “Universality of the phonon–roton spectrum in liquids and superfluidity of 4He,” Z. Naturforsch. A 71, 565–575 (2016).10.1515/zna-2015-0397 
						
					 | 
			
| [17] | 
					 H. Godfrin, M. Meschke, H.-J. Lauter, A. Sultan, H. M. Böhm, E. Krotscheck, and M. Panholzer, “Observation of a roton collective mode in a two-dimensional Fermi liquid,” Nature 483, 576–579 (2012).10.1038/nature10919 
						
					 | 
			
| [18] | 
					 T. Dornheim, Z. A. Moldabekov, J. Vorberger, and B. Militzer, “Path integral Monte Carlo approach to the structural properties and collective excitations of liquid 3He without fixed nodes,” Sci. Rep. 12, 708 (2022).10.1038/s41598-021-04355-9 
						
					 | 
			
| [19] | 
					 T. Dornheim, Z. A. Moldabekov, J. Vorberger, H. Kählert, and M. Bonitz, “Electronic pair alignment and roton feature in the warm dense electron gas,” Commun. Phys. 5, 304 (2022).10.1038/s42005-022-01078-9 
						
					 | 
			
| [20] | 
					 G. J. Kalman, P. Hartmann, K. I. Golden, A. Filinov, and Z. Donkó, “Correlational origin of the roton minimum,” Europhys. Lett. 90, 55002 (2010).10.1209/0295-5075/90/55002 
						
					 | 
			
| [21] | 
					 V. E. Fortov, “Extreme states of matter on Earth and in space,” Phys.-Usp. 52, 615–647 (2009).10.3367/ufne.0179.200906h.0653 
						
					 | 
			
| [22] | 
					 R. P. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, Graduate Texts in Physics (Springer International Publishing, 2018). 
						
					 | 
			
| [23] | 
					 Frontiers and Challenges in Warm Dense Matter, edited by F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey (Springer International Publishing, 2014). 
						
					 | 
			
| [24] | 
					 A. Benuzzi-Mounaix, S. Mazevet, A. Ravasio, T. Vinci, A. Denoeud, M. Koenig, N. Amadou, E. Brambrink, F. Festa, A. Levy, M. Harmand, S. Brygoo, G. Huser, V. Recoules, J. Bouchet, G. Morard, F. Guyot, T. . d. Resseguier, K. Myanishi, N. Ozaki, F. Dorchies, J. Gaudin, P. M. Leguay, O. Peyrusse, O. Henry, D. Raffestin, S. L. Pape, R. Smith, and R. Musella, “Progress in warm dense matter study with applications to planetology,” Phys. Scr. T161, 014060 (2014).10.1088/0031-8949/2014/t161/014060 
						
					 | 
			
| [25] | 
					 S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109 
						
					 | 
			
| [26] | 
					 S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625 
						
					 | 
			
| [27] | 
					 D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger, and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Controlled Fusion 61, 014015 (2019).10.1088/1361-6587/aadd6c 
						
					 | 
			
| [28] | 
					 T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. R. Preston, Z. A. Moldabekov, and J. Vorberger, “Accurate temperature diagnostics for matter under extreme conditions,” Nat. Commun. 13, 7911 (2022).10.1038/s41467-022-35578-7 
						
					 | 
			
| [29] | 
					 T. Dornheim, M. P. Böhme, D. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi, T. Döppner, and J. Vorberger, “Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data,” Phys. Plasmas 30, 042707 (2023).10.1063/5.0139560 
						
					 | 
			
| [30] | 
					 M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and A. Rubio, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012). 
						
					 | 
			
| [31] | 
					 T. Dornheim, S. Groth, A. V. Filinov, and M. Bonitz, “Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties,” J. Chem. Phys. 151, 014108 (2019).10.1063/1.5093171 
						
					 | 
			
| [32] | 
					 M. Jarrell and J. E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Phys. Rep. 269, 133–195 (1996).10.1016/0370-1573(95)00074-7 
						
					 | 
			
| [33] | 
					 M. Boninsegni and D. M. Ceperley, “Density fluctuations in liquid 4He. Path integrals and maximum entropy,” J. Low Temp. Phys. 104, 339–357 (1996).10.1007/bf00751861 
						
					 | 
			
| [34] | 
					 A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V. Svistunov, “Diagrammatic quantum Monte Carlo study of the Fröhlich polaron,” Phys. Rev. B 62, 6317–6336 (2000).10.1103/physrevb.62.6317 
						
					 | 
			
| [35] | 
					 E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, “Ab initio low-energy dynamics of superfluid and solid 4He,” Phys. Rev. B 82, 174510 (2010).10.1103/physrevb.82.174510 
						
					 | 
			
| [36] | 
					 A. W. Sandvik, “Constrained sampling method for analytic continuation,” Phys. Rev. E 94, 063308 (2016).10.1103/physreve.94.063308 
						
					 | 
			
| [37] | 
					 J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, “Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data,” Phys. Rev. E 95, 061302 (2017).10.1103/physreve.95.061302 
						
					 | 
			
| [38] | 
					 O. Goulko, A. S. Mishchenko, L. Pollet, N. Prokof’ev, and B. Svistunov, “Numerical analytic continuation: Answers to well-posed questions,” Phys. Rev. B 95, 014102 (2017).10.1103/physrevb.95.014102 
						
					 | 
			
| [39] | 
					 Y. Kora and M. Boninsegni, “Dynamic structure factor of superfluid 4He from quantum Monte Carlo: Maximum entropy revisited,” Phys. Rev. B 98, 134509 (2018).10.1103/physrevb.98.134509 
						
					 | 
			
| [40] | 
					 H. Yoon, J.-H. Sim, and M. J. Han, “Analytic continuation via domain knowledge free machine learning,” Phys. Rev. B 98, 245101 (2018).10.1103/physrevb.98.245101 
						
					 | 
			
| [41] | 
					 T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018).10.1103/physrevlett.121.255001 
						
					 | 
			
| [42] | 
					 S. Groth, T. Dornheim, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).10.1103/physrevb.99.235122 
						
					 | 
			
| [43] | 
					 R. Fournier, L. Wang, O. V. Yazyev, and Q.S. Wu, “Artificial neural network approach to the analytic continuation problem,” Phys. Rev. Lett. 124, 056401 (2020).10.1103/physrevlett.124.056401 
						
					 | 
			
| [44] | 
					 N. S. Nichols, P. Sokol, and A. Del Maestro, “Parameter-free differential evolution algorithm for the analytic continuation of imaginary time correlation functions,” Phys. Rev. E 106, 025312 (2022).10.1103/physreve.106.025312 
						
					 | 
			
| [45] | 
					 J. Schött, E. G. C. P. van Loon, I. L. M. Locht, M. I. Katsnelson, and I. Di Marco, “Comparison between methods of analytical continuation for bosonic functions,” Phys. Rev. B 94, 245140 (2016).10.1103/physrevb.94.245140 
						
					 | 
			
| [46] | 
					 T. Dornheim, J. Vorberger, Z. A. Moldabekov, and M. Böhme, “Analysing the dynamic structure of warm dense matter in the imaginary-time domain: Theoretical models and simulations,” Philos. Trans. R. Soc. A 381, 20220217 (2023).10.1098/rsta.2022.0217 
						
					 | 
			
| [47] | 
					 J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier Science, 2010). 
						
					 | 
			
| [48] | 
					 J. Chihara, “Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons,” J. Phys. F: Met. Phys. 17, 295–304 (1987).10.1088/0305-4608/17/2/002 
						
					 | 
			
| [49] | |
| [50] | 
					 T. Dornheim, D. C. Wicaksono, J. E. Suarez-Cardona, P. Tolias, M. P. Böhme, Z. A. Moldabekov, M. Hecht, and J. Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023).10.1103/physrevb.107.155148 
						
					 | 
			
| [51] | 
					 P.-F. Loos and P. M. W. Gill, “The uniform electron gas,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 410–429 (2016).10.1002/wcms.1257 
						
					 | 
			
| [52] | 
					 T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Rep. 744, 1–86 (2018).10.1016/j.physrep.2018.04.001 
						
					 | 
			
| [53] | 
					 M. Takahashi and M. Imada, “Monte Carlo calculation of quantum systems,” J. Phys. Soc. Jpn. 53, 963–974 (1984).10.1143/jpsj.53.963 
						
					 | 
			
| [54] | 
					 M. Baus and J.-P. Hansen, “Statistical mechanics of simple Coulomb systems,” Phys. Rep. 59, 1–94 (1980).10.1016/0370-1573(80)90022-8 
						
					 | 
			
| [55] | 
					 F. Lucco Castello and P. Tolias, “Bridge functions of classical one-component plasmas,” Phys. Rev. E 105, 015208 (2022).10.1103/physreve.105.015208 
						
					 | 
			
| [56] | 
					 L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53, 1814–1832 (1996).10.1103/physrevb.53.1814 
						
					 | 
			
| [57] | 
					 T. Ott, H. Thomsen, J. W. Abraham, T. Dornheim, and M. Bonitz, “Recent progress in the theory and simulation of strongly correlated plasmas: Phase transitions, transport, quantum, and magnetic field effects,” The European Physical Journal D 72, 84 (2018).10.1140/epjd/e2018-80385-7 
						
					 | 
			
| [58] | 
					 E. Wigner, “On the interaction of electrons in metals,” Phys. Rev. 46, 1002–1011 (1934).10.1103/physrev.46.1002 
						
					 | 
			
| [59] | 
					 M. D. Jones and D. M. Ceperley, “Crystallization of the one-component plasma at finite temperature,” Phys. Rev. Lett. 76, 4572–4575 (1996).10.1103/physrevlett.76.4572 
						
					 | 
			
| [60] | 
					 N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler, and R. J. Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals,” Phys. Rev. B 69, 085116 (2004).10.1103/physrevb.69.085116 
						
					 | 
			
| [61] | 
					 S. Azadi and N. D. Drummond, “Low-density phase diagram of the three-dimensional electron gas,” Phys. Rev. B 105, 245135 (2022).10.1103/physrevb.105.245135 
						
					 | 
			
| [62] | 
					 T. Dornheim, J. Vorberger, Z. A. Moldabekov, G. Röpke, and W.-D. Kraeft, “The uniform electron gas at high temperatures: Ab initio path integral Monte Carlo simulations and analytical theory,” High Energy Density Phys. 45, 101015 (2022).10.1016/j.hedp.2022.101015 
						
					 | 
			
| [63] | 
					 J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).10.1103/physrevb.23.5048 
						
					 | 
			
| [64] | 
					 J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).10.1103/physrevb.45.13244 
						
					 | 
			
| [65] | 
					 M. Corradini, R. Del Sole, G. Onida, and M. Palummo, “Analytical expressions for the local-field factor g(q) and the exchange-correlation kernel Kxc(r) of the homogeneous electron gas,” Phys. Rev. B 57, 14569 (1998).10.1103/physrevb.57.14569 
						
					 | 
			
| [66] | 
					 S. Groth, T. Dornheim, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001 
						
					 | 
			
| [67] | 
					 V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014).10.1103/physrevlett.112.076403 
						
					 | 
			
| [68] | 
					 T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Z. A. Moldabekov, and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys. 151, 194104 (2019).10.1063/1.5123013 
						
					 | 
			
| [69] | 
					 S. Moroni, D. M. Ceperley, and G. Senatore, “Static response and local field factor of the electron gas,” Phys. Rev. Lett. 75, 689 (1995).10.1103/physrevlett.75.689 
						
					 | 
			
| [70] | 
					 D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).10.1103/physrevlett.45.566 
						
					 | 
			
| [71] | 
					 G. G. Spink, R. J. Needs, and N. D. Drummond, “Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas,” Phys. Rev. B 88, 085121 (2013).10.1103/physrevb.88.085121 
						
					 | 
			
| [72] | 
					 T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit,” Phys. Rev. Lett. 117, 156403 (2016).10.1103/physrevlett.117.156403 
						
					 | 
			
| [73] | 
					 T. Dornheim, J. Vorberger, and M. Bonitz, “Nonlinear electronic density response in warm dense matter,” Phys. Rev. Lett. 125, 085001 (2020).10.1103/physrevlett.125.085001 
						
					 | 
			
| [74] | 
					 E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, “Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas,” Phys. Rev. Lett. 110, 146405 (2013).10.1103/physrevlett.110.146405 
						
					 | 
			
| [75] | 
					 F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd, “Accurate exchange-correlation energies for the warm dense electron gas,” Phys. Rev. Lett. 117, 115701 (2016).10.1103/physrevlett.117.115701 
						
					 | 
			
| [76] | 
					 T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio thermodynamic results for the degenerate electron gas at finite temperature,” Phys. Rev. Lett. 115, 130402 (2015).10.1103/physrevlett.115.130402 
						
					 | 
			
| [77] | 
					 L. D. Fosdick and H. F. Jordan, “Path-integral calculation of the two-particle slater sum for He4,” Phys. Rev. 143, 58–66 (1966).10.1103/physrev.143.58 
						
					 | 
			
| [78] | 
					 K. Sakkos, J. Casulleras, and J. Boronat, “High order chin actions in path integral Monte Carlo,” J. Chem. Phys. 130, 204109 (2009).10.1063/1.3143522 
						
					 | 
			
| [79] | 
					 L. Brualla, K. Sakkos, J. Boronat, and J. Casulleras, “Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo,” J. Chem. Phys. 121, 636–643 (2004).10.1063/1.1760512 
						
					 | 
			
| [80] | 
					 H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, EBL-Schweitzer (World Scientific, 2009). 
						
					 | 
			
| [81] | 
					 H. De Raedt and B. De Raedt, “Applications of the generalized Trotter formula,” Phys. Rev. A 28, 3575–3580 (1983).10.1103/physreva.28.3575 
						
					 | 
			
| [82] | 
					 T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas,” J. Chem. Phys. 155, 054110 (2021).10.1063/5.0058988 
						
					 | 
			
| [83] | 
					 D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74, 4078–4095 (1981).10.1063/1.441588 
						
					 | 
			
| [84] | 
					 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).10.1063/1.1699114 
						
					 | 
			
| [85] | 
					 T. Dornheim, M. Böhme, B. Militzer, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes,” Phys. Rev. B 103, 205142 (2021).10.1103/physrevb.103.205142 
						
					 | 
			
| [86] | 
					 M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,” Phys. Rev. E 74, 036701 (2006).10.1103/physreve.74.036701 
						
					 | 
			
| [87] | 
					 M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm for continuous-space path integral Monte Carlo simulations,” Phys. Rev. Lett. 96, 070601 (2006).10.1103/physrevlett.96.070601 
						
					 | 
			
| [88] | 
					 M. Troyer and U. J. Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201 (2005).10.1103/physrevlett.94.170201 
						
					 | 
			
| [89] | 
					 E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, “Sign problem in the numerical simulation of many-electron systems,” Phys. Rev. B 41, 9301–9307 (1990).10.1103/physrevb.41.9301 
						
					 | 
			
| [90] | 
					 T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307 
						
					 | 
			
| [91] | 
					 D. M. Ceperley, “Fermion nodes,” J. Stat. Phys. 63, 1237–1267 (1991).10.1007/bf01030009 
						
					 | 
			
| [92] | 
					 T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, “Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New J. Phys. 17, 073017 (2015).10.1088/1367-2630/17/7/073017 
						
					 | 
			
| [93] | 
					 A. Yilmaz, K. Hunger, T. Dornheim, S. Groth, and M. Bonitz, “Restricted configuration path integral Monte Carlo,” J. Chem. Phys. 153, 124114 (2020).10.1063/5.0022800 
						
					 | 
			
| [94] | 
					 T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg, “Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration,” J. Chem. Phys. 153, 234104 (2020).10.1063/5.0030760 
						
					 | 
			
| [95] | 
					 Y. Xiong and H. Xiong, “On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem,” J. Chem. Phys. 157, 094112 (2022).10.1063/5.0106067 
						
					 | 
			
| [96] | 
					 D. Thirumalai and B. J. Berne, “On the calculation of time correlation functions in quantum systems: Path integral techniques,” J. Chem. Phys. 79, 5029–5033 (1983).10.1063/1.445597 
						
					 | 
			
| [97] | 
					 S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97, 076404 (2006).10.1103/physrevlett.97.076404 
						
					 | 
			
| [98] | 
					 T. Dornheim, S. Groth, and M. Bonitz, “Ab initio results for the static structure factor of the warm dense electron gas,” Contrib. Plasma Phys. 57, 468–478 (2017).10.1002/ctpp.201700096 
						
					 | 
			
| [99] | 
					 M. Holzmann, R. C. Clay, M. A. Morales, N. M. Tubman, D. M. Ceperley, and C. Pierleoni, “Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids,” Phys. Rev. B 94, 035126 (2016).10.1103/physrevb.94.035126 
						
					 | 
			
| [100] | 
					 A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys. 12, 35 (1975).10.1007/bf01024183 
						
					 | 
			
| [101] | 
					 K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Phys. Rev. 176, 589 (1968).10.1103/physrev.176.589 
						
					 | 
			
| [102] | 
					 S. Tanaka and S. Ichimaru, “Thermodynamics and correlational properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” J. Phys. Soc. Jpn. 55, 2278–2289 (1986).10.1143/jpsj.55.2278 
						
					 | 
			
| [103] | 
					 T. Sjostrom and J. Dufty, “Uniform electron gas at finite temperatures,” Phys. Rev. B 88, 115123 (2013).10.1103/physrevb.88.115123 
						
					 | 
			
| [104] | 
					 S. Tanaka, “Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation,” J. Chem. Phys. 145, 214104 (2016).10.1063/1.4969071 
						
					 | 
			
| [105] | 
					 P. Vashishta and K. S. Singwi, “Electron correlations at metallic densities. V,” Phys. Rev. B 6, 875 (1972).10.1103/physrevb.6.875 
						
					 | 
			
| [106] | 
					 H. K. Schweng and H. M. Böhm, “Finite-temperature electron correlations in the framework of a dynamic local-field correction,” Phys. Rev. B 48, 2037 (1993).10.1103/physrevb.48.2037 
						
					 | 
			
| [107] | 
					 A. Holas and S. Rahman, “Dynamic local-field factor of an electron liquid in the quantum versions of the Singwi-Tosi-Land-Sjölander and Vashishta-Singwi theories,” Phys. Rev. B 35, 2720 (1987).10.1103/physrevb.35.2720 
						
					 | 
			
| [108] | 
					 F. Lucco Castello, P. Tolias, and T. Dornheim, “Classical bridge functions in classical and quantum plasma liquids,” Europhys. Lett. 138, 44003 (2022).10.1209/0295-5075/ac7166 
						
					 | 
			
| [109] | 
					 P. Tolias, F. Lucco Castello, and T. Dornheim, “Integral equation theory based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 155, 134115 (2021).10.1063/5.0065988 
						
					 | 
			
| [110] | 
					 P. Tolias, F. Lucco Castello, and T. Dornheim, “Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 158, 141102 (2023).10.1063/5.0145687 
						
					 | 
			
| [111] | 
					 C. Bowen, G. Sugiyama, and B. J. Alder, “Static dielectric response of the electron gas,” Phys. Rev. B 50, 14838 (1994).10.1103/physrevb.50.14838 
						
					 | 
			
| [112] | 
					 N. Mihara and R. D. Puff, “Liquid structure factor of ground-state He4,” Phys. Rev. 174, 221–227 (1968).10.1103/physrev.174.221 
						
					 | 
			
| [113] | 
					 A. W. Sandvik, S. Capponi, D. Poilblanc, and E. Dagotto, “Numerical calculations of the B1g Raman spectrum of the two-dimensional Heisenberg model,” Phys. Rev. B 57, 8478–8493 (1998).10.1103/physrevb.57.8478 
						
					 | 
			
| [114] | 
					 A. Filinov and M. Bonitz, “Collective and single-particle excitations in two-dimensional dipolar Bose gases,” Phys. Rev. A 86, 043628 (2012).10.1103/physreva.86.043628 
						
					 | 
			
| [115] | 
					 A. Filinov, “Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition,” Phys. Rev. A 94, 013603 (2016).10.1103/physreva.94.013603 
						
					 | 
			
| [116] | 
					 I. M. Tkachenko, Y. V. Arkhipov, and A. Adil, The Method of Moments and Its Applications in Plasma Physics (Akademikerverlag, Saarbrücken, Germany, 2012). 
						
					 | 
			
| [117] | 
					 A. V. Filinov, J. Ara, and I. M. Tkachenko, “Dynamical response in strongly coupled uniform electron liquids: Observation of plasmon-roton coexistence using nine sum rules, Shannon information entropy, and path-integral Monte Carlo simulations,” Phys. Rev. B 107, 195143 (2023).10.1103/physrevb.107.195143 
						
					 | 
			
| [118] | 
					 R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons (Cambridge University Press, 2016). 
						
					 | 
			
| [119] | 
					 R. Thiele, T. Bornath, C. Fortmann, A. Höll, R. Redmer, H. Reinholz, G. Röpke, A. Wierling, S. H. Glenzer, and G. Gregori, “Plasmon resonance in warm dense matter,” Phys. Rev. E 78, 026411 (2008).10.1103/physreve.78.026411 
						
					 | 
			
| [120] | 
					 S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W.-D. Kraeft, and R. Redmer, “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).10.1103/physrevlett.98.065002 
						
					 | 
			
| [121] | 
					 T. R. Preston, K. Appel, E. Brambrink, B. Chen, L. B. Fletcher, C. Fortmann-Grote, S. H. Glenzer, E. Granados, S. Göde, Z. Konôpková, H. J. Lee, H. Marquardt, E. E. McBride, B. Nagler, M. Nakatsutsumi, P. Sperling, B. B. L. Witte, and U. Zastrau, “Measurements of the momentum-dependence of plasmonic excitations in matter around 1 mbar using an X-ray free electron laser,” Appl. Phys. Lett. 114, 014101 (2019).10.1063/1.5070140 
						
					 | 
			
| [122] | 
					 P. Hamann, J. Vorberger, T. Dornheim, Z. A. Moldabekov, and M. Bonitz, “Ab initio results for the plasmon dispersion and damping of the warm dense electron gas,” Contrib. Plasma Phys. 60, e202000147 (2020).10.1002/ctpp.202000147 
						
					 | 
			
| [123] | 
					 T. Döppner, O. L. Landen, H. J. Lee, P. Neumayer, S. P. Regan, and S. H. Glenzer, “Temperature measurement through detailed balance in x-ray Thomson scattering,” High Energy Density Phys. 5, 182–186 (2009).10.1016/j.hedp.2009.05.012 
						
					 | 
			
| [124] | 
					 M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L. B. Fletcher, S. H. Glenzer, and R. Redmer, “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Phys. Rev. E 107, 065207 (2023).10.1103/physreve.107.065207 
						
					 | 
			
| [125] | 
					 T. Dornheim, T. Sjostrom, S. Tanaka, and J. Vorberger, “Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories,” Phys. Rev. B 101, 045129 (2020).10.1103/physrevb.101.045129 
						
					 | 
			
| [126] | 
					 T. Dornheim, P. Tolias, Z. A. Moldabekov, A. Cangi, and J. Vorberger, “Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations,” J. Chem. Phys. 156, 244113 (2022).10.1063/5.0097768 
						
					 | 
			
| [127] | 
					 T. Dornheim, P. Tolias, Z. A. Moldabekov, and J. Vorberger, “Energy response and spatial alignment of the perturbed electron gas,” J. Chem. Phys. 158, 164108 (2023).10.1063/5.0146503 
						
					 | 
			
| [128] | 
					 K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53 
						
					 | 
			
| [129] | 
					 K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, P. Tzeferacos, and J. F. Benage, “Equation of state measurements of warm dense carbon using laser-driven shock and release technique,” Phys. Rev. Lett. 112, 155003 (2014).10.1103/physrevlett.112.155003 
						
					 | 
			
| [130] | 
					 K. Falk, S. P. Regan, J. Vorberger, M. A. Barrios, T. R. Boehly, D. E. Fratanduono, S. H. Glenzer, D. G. Hicks, S. X. Hu, C. D. Murphy, P. B. Radha, S. Rothman, A. P. Jephcoat, J. S. Wark, D. O. Gericke, and G. Gregori, “Self-consistent measurement of the equation of state of liquid deuterium,” High Energy Density Phys. 8, 76–80 (2012).10.1016/j.hedp.2011.11.006 
						
					 | 
			
| [131] | 
					 R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736 
						
					 | 
			
| [132] | 
					 T. Tschentscher, C. Bressler, J. Grünert, A. Madsen, A. P. Mancuso, M. Meyer, A. Scherz, H. Sinn, and U. Zastrau, “Photon beam transport and scientific instruments at the European XFEL,” Appl. Sci. 7, 592 (2017).10.3390/app7060592 
						
					 | 
			
| [133] | 
					 M. Böhme, Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Static electronic density response of warm dense hydrogen: Ab initio path integral Monte Carlo simulations,” Phys. Rev. Lett. 129, 066402 (2022).10.1103/physrevlett.129.066402 
						
					 | 
			
| [134] | 
					 Z. A. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and T. Dornheim, “Ab initio static exchange–correlation kernel across jacob’s ladder without functional derivatives,” J. Chem. Theory Comput. 19, 1286–1299 (2023).10.1021/acs.jctc.2c01180 
						
					 | 
			
| [135] | 
					 M. Panholzer, M. Gatti, and L. Reining, “Nonlocal and nonadiabatic effects in the charge-density response of solids: A time-dependent density-functional approach,” Phys. Rev. Lett. 120, 166402 (2018).10.1103/physrevlett.120.166402 
						
					 | 
			
| [136] | 
					 A. D. Kaplan, N. K. Nepal, A. Ruzsinszky, P. Ballone, and J. P. Perdew, “First-principles wave-vector- and frequency-dependent exchange-correlation kernel for jellium at all densities,” Phys. Rev. B 105, 035123 (2022).10.1103/physrevb.105.035123 
						
					 | 
			
| [137] | 
					 S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, “Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory,” Phys. Rev. B 69, 155112 (2004).10.1103/physrevb.69.155112 
						
					 | 
			
| [138] | 
					 K. Ramakrishna and J. Vorberger, “Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon,” J. Phys.: Condens. Matter 32, 095401 (2019).10.1088/1361-648x/ab558e 
						
					 | 
			
| [139] | 
					 C. Flamant, G. Kolesov, E. Manousakis, and E. Kaxiras, “Imaginary-time time-dependent density functional theory and its application for robust convergence of electronic states,” J. Chem. Theory Comput. 15, 6036–6045 (2019).10.1021/acs.jctc.9b00617 
						
					 | 
			
| [140] | 
					 T. Dornheim, J. Vorberger, and Z. A. Moldabekov, “Nonlinear density response and higher order correlation functions in warm dense matter,” J. Phys. Soc. Jpn. 90, 104002 (2021).10.7566/jpsj.90.104002 
						
					 | 
			
| [141] | 
					 T. Dornheim, M. Böhme, Z. A. Moldabekov, J. Vorberger, and M. Bonitz, “Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics,” Phys. Rev. Res. 3, 033231 (2021).10.1103/physrevresearch.3.033231 
						
					 | 
			
| [142] | 
					 Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Density functional theory perspective on the nonlinear response of correlated electrons across temperature regimes,” J. Chem. Theory Comput. 18, 2900–2912 (2022).10.1021/acs.jctc.2c00012 
						
					 | 
			
| [143] | 
					 P. Tolias, T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Unravelling the nonlinear ideal density response of many-body systems,” Europhys. Lett. 142, 44001 (2023).10.1209/0295-5075/acd3a6 
						
					 | 
			
| [144] | 
					 Z. A. Moldabekov, T. Dornheim, and A. Cangi, “Thermal excitation signals in the inhomogeneous warm dense electron gas,” Sci. Rep. 12, 1093 (2022).10.1038/s41598-022-05034-z 
						
					 |