Citation: | Yu Jiacheng, Zhong Jiayong, Ping Yongli, An Weiming. Electron acceleration in a coil target-driven low-β magnetic reconnection simulation[J]. Matter and Radiation at Extremes, 2023, 8(6): 064003. doi: 10.1063/5.0149259 |
[1] |
E. N. Parker, “Sweet’s mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res. 62, 509–520, (1957).10.1029/jz062i004p00509
|
[2] |
M. Hoshino, T. Mukai, T. Terasawa, and I. Shinohara, “Suprathermal electron acceleration in magnetic reconnection,” J. Geophys. Res. 106, 25979–25997, (2001).10.1029/2001ja900052
|
[3] |
Y. Ren, M. Yamada, H. Ji, S. P. Gerhardt, and R. Kulsrud, “Identification of the electron-diffusion region during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett. 101, 085003 (2008).10.1103/physrevlett.101.085003
|
[4] |
P. V. Savrukhin, “Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 tokamak,” Phys. Rev. Lett. 86, 3036–3039 (2001).10.1103/physrevlett.86.3036
|
[5] |
J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek, A. Balogh, M. Andre, H. Reme, M. Hesse, and C. Mouikis, “Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region: Electric fields at the reconnection region,” J. Geophys. Res. 110, A09206, (2005).10.1029/2004ja010708
|
[6] |
M. Øieroset, R. P. Lin, T. D. Phan, D. E. Larson, and S. D. Bale, “Evidence for electron acceleration up to ∼300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail,” Phys. Rev. Lett. 89, 195001 (2002).10.1103/physrevlett.89.195001
|
[7] |
A. G. Emslie, “Energy partition in two solar flare/CME events,” J. Geophys. Res. 109, A10104, (2004).10.1029/2004ja010571
|
[8] |
S. Krucker, H. S. Hudson, L. Glesener, S. M. White, S. Masuda, J.-P. Wuelser, and R. P. Lin, “Measurements of the coronal acceleration region of a solar flare,” Astrophys. J. 714, 1108–1119 (2010).10.1088/0004-637x/714/2/1108
|
[9] |
B. Cerutti, D. A. Uzdensky, and M. C. Begelman, “Extreme particle acceleration in magnetic reconnection layers: Application to the gamma-ray flares in the Crab Nebula,” Astrophys. J. 746, 148 (2012).10.1088/0004-637x/746/2/148
|
[10] |
L. Sironi and A. Spitkovsky, “Relativistic reconnection: An efficient source of non-thermal particles,” Astrophys. J. 783, L21 (2014).10.1088/2041-8205/783/1/l21
|
[11] |
H. Ji, W. Daughton, J. Jara-Almonte, A. Le, A. Stanier, and J. Yoo, “Magnetic reconnection in the era of exascale computing and multiscale experiments,” Nat. Rev. Phys. 4, 263 (2022); arXiv:2202.09004.10.1038/s42254-021-00419-x
|
[12] |
M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz, F. Jobes, Y. Ono, and F. Perkins, “Study of driven magnetic reconnection in a laboratory plasma,” Phys. Plasmas 4, 1936 (1997).10.1063/1.872336
|
[13] |
Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsyn, “Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett. 95, 055003 (2005).10.1103/physrevlett.95.055003
|
[14] |
H. Ji, Y. Ren, M. Yamada, S. Dorfman, W. Daughton, and S. P. Gerhardt, “New insights into dissipation in the electron layer during magnetic reconnection,” Geophys. Res. Lett. 35, L13106, (2008).10.1029/2008gl034538
|
[15] |
P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, “Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions,” Phys. Rev. Lett. 97, 255001 (2006).10.1103/physrevlett.97.255001
|
[16] |
J. Zhong et al., “Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers,” Nat. Phys. 6, 984 (2010).10.1038/nphys1790
|
[17] |
G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection between colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113, 105003 (2014).10.1103/physrevlett.113.105003
|
[18] |
H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, and C. Yamanaka, “Generation of a strong magnetic field by an intense CO2 laser pulse,” Phys. Rev. Lett. 56, 846–849 (1986).10.1103/physrevlett.56.846
|
[19] |
S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).10.1038/srep01170
|
[20] |
X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L. Wang, and G. Zhao, “Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target,” Phys. Plasmas 23, 032125 (2016).10.1063/1.4944928
|
[21] |
X. Yuan, J. Zhong, Z. Zhang, W. Zhou, J. Teng, Y. Li, B. Han, D. Yuan, J. Lin, C. Liu, Y. Li, B. Zhu, H. Wei, G. Liang, W. Hong, S. He, S. Yang, Y. Zhao, Z. Deng, F. Lu, Z. Zhang, B. Zhu, K. Zhou, J. Su, Z. Zhao, Y. Gu, G. Zhao, and J. Zhang, “Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil,” Plasma Phys. Controlled Fusion 60, 065009 (2018).10.1088/1361-6587/aabaa9
|
[22] |
A. Chien, L. Gao, H. Ji, X. Yuan, E. G. Blackman, H. Chen, P. C. Efthimion, G. Fiksel, D. H. Froula, K. W. Hill, K. Huang, Q. Lu, J. D. Moody, and P. M. Nilson, “Study of a magnetically driven reconnection platform using ultrafast proton radiography,” Phys. Plasmas 26, 062113 (2019).10.1063/1.5095960
|
[23] |
K. F. F. Law, Y. Abe, A. Morace, Y. Arikawa, S. Sakata, S. Lee, K. Matsuo, H. Morita, Y. Ochiai, C. Liu, A. Yogo, K. Okamoto, D. Golovin, M. Ehret, T. Ozaki, M. Nakai, Y. Sentoku, J. J. Santos, E. d’Humières, P. Korneev, and S. Fujioka, “Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system,” Phys. Rev. E 102, 033202 (2020).10.1103/physreve.102.033202
|
[24] |
J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech, “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
|
[25] |
A. Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, W. Daughton, A. Stanier, A. Le, F. Guo, R. Follett, H. Chen, G. Fiksel, G. Bleotu, R. C. Cauble, S. N. Chen, A. Fazzini, K. Flippo, O. French, D. H. Froula, J. Fuchs, S. Fujioka, K. Hill, S. Klein, C. Kuranz, P. Nilson, A. Rasmus, and R. Takizawa, “Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma,” Nat. Phys. 19, 254 (2023).10.1038/s41567-022-01839-x
|
[26] |
X. Yuan, C. Zhou, H. Zhang, R. Li, Y. Ping, and J. Zhong, “Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor–coil target,” Chin. Phys. B 32, 054101 (2023).10.1088/1674-1056/acb911
|
[27] |
G. Fiksel, W. Fox, L. Gao, and H. Ji, “A simple model for estimating a magnetic field in laser-driven coils,” Appl. Phys. Lett. 109, 134103 (2016).10.1063/1.4963763
|
[28] | |
[29] |
W. Wang, H. Cai, J. Teng, J. Chen, S. He, L. Shan, F. Lu, Y. Wu, B. Zhang, W. Hong, B. Bi, F. Zhang, D. Liu, F. Xue, B. Li, H. Liu, W. He, J. Jiao, K. Dong, F. Zhang, Y. He, B. Cui, N. Xie, Z. Yuan, C. Tian, X. Wang, K. Zhou, Z. Deng, Z. Zhang, W. Zhou, L. Cao, B. Zhang, S. Zhu, X. He, and Y. Gu, “Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target,” Phys. Plasmas 25, 083111 (2018).10.1063/1.5000991
|
[30] |
M. Hoshino, “Electron surfing acceleration in magnetic reconnection,” J. Geophys. Res. 110, A10215, (2005).10.1029/2005ja011229
|
[31] |
D. Ball, L. Sironi, and F. Özel, “Electron and proton acceleration in trans-relativistic magnetic reconnection: Dependence on plasma beta and magnetization,” Astrophys. J. 862, 80 (2018).10.3847/1538-4357/aac820
|
[32] |
J. T. Dahlin, J. F. Drake, and M. Swisdak, “The mechanisms of electron heating and acceleration during magnetic reconnection,” Phys. Plasmas 21, 092304 (2014).10.1063/1.4894484
|
[33] |
T. G. Northrop, “Adiabatic charged-particle motion,” Rev. Geophys. 1, 283, (1963).10.1029/rg001i003p00283
|
[34] |
J. Egedal, W. Daughton, A. Le, and A. L. Borg, “Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within magnetic reconnection exhausts,” Phys. Plasmas 22, 101208 (2015).10.1063/1.4933055
|
[35] |
X. Li, F. Guo, H. Li, and G. Li, “Particle acceleration during magnetic reconnection in a low-beta plasma,” Astrophys. J. 843, 21 (2017).10.3847/1538-4357/aa745e
|
[36] |
Y. Ping, J. Zhong, X. Wang, B. Han, W. Sun, Y. Zhang, D. Yuan, C. Xing, J. Wang, Z. Liu, Z. Zhang, B. Qiao, H. Zhang, Y. Li, J. Zhu, G. Zhao, and J. Zhang, “Turbulent magnetic reconnection generated by intense lasers,” Nat. Phys. 19, 263 (2023).10.1038/s41567-022-01855-x
|
[37] |
H. S. Fu, Y. V. Khotyaintsev, A. Vaivads, A. Retinò, and M. André, “Energetic electron acceleration by unsteady magnetic reconnection,” Nat. Phys. 9, 426–430 (2013).10.1038/nphys2664
|
[38] |
Z. H. Zhong, M. Zhou, R. X. Tang, X. H. Deng, D. L. Turner, I. J. Cohen, Y. Pang, H. Y. Man, C. T. Russell, B. L. Giles, W. R. Paterson, Y. Khotyaintsev, and J. L. Burch, “Direct evidence for electron acceleration within ion-scale flux rope,” Geophys. Res. Lett. 47, e2019GL085141, (2020).10.1029/2019gl085141
|