Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Yu Jiacheng, Zhong Jiayong, Ping Yongli, An Weiming. Electron acceleration in a coil target-driven low-β magnetic reconnection simulation[J]. Matter and Radiation at Extremes, 2023, 8(6): 064003. doi: 10.1063/5.0149259
Citation: Yu Jiacheng, Zhong Jiayong, Ping Yongli, An Weiming. Electron acceleration in a coil target-driven low-β magnetic reconnection simulation[J]. Matter and Radiation at Extremes, 2023, 8(6): 064003. doi: 10.1063/5.0149259

Electron acceleration in a coil target-driven low-β magnetic reconnection simulation

doi: 10.1063/5.0149259
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jyzhong@bnu.edu.cn
  • Received Date: 2023-03-05
  • Accepted Date: 2023-08-04
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • Magnetic reconnection driven by a capacitor coil target is an innovative way to investigate low-β magnetic reconnection in the laboratory, where β is the ratio of particle thermal pressure to magnetic pressure. Low-β magnetic reconnection frequently occurs in the Earth’s magnetosphere, where the plasma is characterized by β ≲ 0.01. In this paper, we analyze electron acceleration during magnetic reconnection and its effects on the electron energy spectrum via particle-in-cell simulations informed by parameters obtained from experiments. We note that magnetic reconnection starts when the current sheet is down to about three electron inertial lengths. From a quantitative comparison of the different mechanisms underlying the electron acceleration in low-β reconnection driven by coil targets, we find that the electron acceleration is dominated by the betatron mechanism, whereas the parallel electric field plays a cooling role and Fermi acceleration is negligible. The accelerated electrons produce a hardened power-law spectrum with a high-energy bump. We find that injecting electrons into the current sheet is likely to be essential for further acceleration. In addition, we perform simulations for both a double-coil co-directional magnetic field and a single-coil one to eliminate the possibility of direct acceleration of electrons beyond thermal energies by the coil current. The squeeze between the two coil currents can only accelerate electrons inefficiently before reconnection. The simulation results provide insights to guide future experimental improvements in low-β magnetic reconnection driven by capacitor coil targets.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Jiacheng Yu: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Writing – original draft (equal). Jiayong Zhong: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Yongli Ping: Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Software (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Weiming An: Funding acquisition (equal); Software (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    We performed two simulations with reference to the parameters of Yuan et al.26 and Chien et al.,25 respectively, and the results as shown in Figs. 9 and 10. The relevant parameters for both simulations are given in Tables II and III. The electron energy spectrum in all three simulations has a bump, but the spectral indices are slightly different. The differences in the non-thermal spectral index of the electrons in these simulations are within the error bars. Coil radius, coil separation, and current rise time may all contribute to the small variations in the spectral index. The exact reasons need to be investigated by further simulations. Figures 9(c)9(e) and 10(c)10(e) show a similar spatial distribution as in Fig. 6, and the acceleration curves for all three simulations indicate that the contribution of the betatron acceleration is the largest. These results support the previous conclusion that the betatron mechanism is the dominant mechanism for electron acceleration during magnetic reconnection.
  • loading
  • [1]
    E. N. Parker, “Sweet’s mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res. 62, 509–520, (1957).10.1029/jz062i004p00509
    [2]
    M. Hoshino, T. Mukai, T. Terasawa, and I. Shinohara, “Suprathermal electron acceleration in magnetic reconnection,” J. Geophys. Res. 106, 25979–25997, (2001).10.1029/2001ja900052
    [3]
    Y. Ren, M. Yamada, H. Ji, S. P. Gerhardt, and R. Kulsrud, “Identification of the electron-diffusion region during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett. 101, 085003 (2008).10.1103/physrevlett.101.085003
    [4]
    P. V. Savrukhin, “Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 tokamak,” Phys. Rev. Lett. 86, 3036–3039 (2001).10.1103/physrevlett.86.3036
    [5]
    J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek, A. Balogh, M. Andre, H. Reme, M. Hesse, and C. Mouikis, “Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region: Electric fields at the reconnection region,” J. Geophys. Res. 110, A09206, (2005).10.1029/2004ja010708
    [6]
    M. Øieroset, R. P. Lin, T. D. Phan, D. E. Larson, and S. D. Bale, “Evidence for electron acceleration up to ∼300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail,” Phys. Rev. Lett. 89, 195001 (2002).10.1103/physrevlett.89.195001
    [7]
    A. G. Emslie, “Energy partition in two solar flare/CME events,” J. Geophys. Res. 109, A10104, (2004).10.1029/2004ja010571
    [8]
    S. Krucker, H. S. Hudson, L. Glesener, S. M. White, S. Masuda, J.-P. Wuelser, and R. P. Lin, “Measurements of the coronal acceleration region of a solar flare,” Astrophys. J. 714, 1108–1119 (2010).10.1088/0004-637x/714/2/1108
    [9]
    B. Cerutti, D. A. Uzdensky, and M. C. Begelman, “Extreme particle acceleration in magnetic reconnection layers: Application to the gamma-ray flares in the Crab Nebula,” Astrophys. J. 746, 148 (2012).10.1088/0004-637x/746/2/148
    [10]
    L. Sironi and A. Spitkovsky, “Relativistic reconnection: An efficient source of non-thermal particles,” Astrophys. J. 783, L21 (2014).10.1088/2041-8205/783/1/l21
    [11]
    H. Ji, W. Daughton, J. Jara-Almonte, A. Le, A. Stanier, and J. Yoo, “Magnetic reconnection in the era of exascale computing and multiscale experiments,” Nat. Rev. Phys. 4, 263 (2022); arXiv:2202.09004.10.1038/s42254-021-00419-x
    [12]
    M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz, F. Jobes, Y. Ono, and F. Perkins, “Study of driven magnetic reconnection in a laboratory plasma,” Phys. Plasmas 4, 1936 (1997).10.1063/1.872336
    [13]
    Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsyn, “Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett. 95, 055003 (2005).10.1103/physrevlett.95.055003
    [14]
    H. Ji, Y. Ren, M. Yamada, S. Dorfman, W. Daughton, and S. P. Gerhardt, “New insights into dissipation in the electron layer during magnetic reconnection,” Geophys. Res. Lett. 35, L13106, (2008).10.1029/2008gl034538
    [15]
    P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, “Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions,” Phys. Rev. Lett. 97, 255001 (2006).10.1103/physrevlett.97.255001
    [16]
    J. Zhong et al., “Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers,” Nat. Phys. 6, 984 (2010).10.1038/nphys1790
    [17]
    G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection between colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113, 105003 (2014).10.1103/physrevlett.113.105003
    [18]
    H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, and C. Yamanaka, “Generation of a strong magnetic field by an intense CO2 laser pulse,” Phys. Rev. Lett. 56, 846–849 (1986).10.1103/physrevlett.56.846
    [19]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).10.1038/srep01170
    [20]
    X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L. Wang, and G. Zhao, “Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target,” Phys. Plasmas 23, 032125 (2016).10.1063/1.4944928
    [21]
    X. Yuan, J. Zhong, Z. Zhang, W. Zhou, J. Teng, Y. Li, B. Han, D. Yuan, J. Lin, C. Liu, Y. Li, B. Zhu, H. Wei, G. Liang, W. Hong, S. He, S. Yang, Y. Zhao, Z. Deng, F. Lu, Z. Zhang, B. Zhu, K. Zhou, J. Su, Z. Zhao, Y. Gu, G. Zhao, and J. Zhang, “Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil,” Plasma Phys. Controlled Fusion 60, 065009 (2018).10.1088/1361-6587/aabaa9
    [22]
    A. Chien, L. Gao, H. Ji, X. Yuan, E. G. Blackman, H. Chen, P. C. Efthimion, G. Fiksel, D. H. Froula, K. W. Hill, K. Huang, Q. Lu, J. D. Moody, and P. M. Nilson, “Study of a magnetically driven reconnection platform using ultrafast proton radiography,” Phys. Plasmas 26, 062113 (2019).10.1063/1.5095960
    [23]
    K. F. F. Law, Y. Abe, A. Morace, Y. Arikawa, S. Sakata, S. Lee, K. Matsuo, H. Morita, Y. Ochiai, C. Liu, A. Yogo, K. Okamoto, D. Golovin, M. Ehret, T. Ozaki, M. Nakai, Y. Sentoku, J. J. Santos, E. d’Humières, P. Korneev, and S. Fujioka, “Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system,” Phys. Rev. E 102, 033202 (2020).10.1103/physreve.102.033202
    [24]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech, “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [25]
    A. Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, W. Daughton, A. Stanier, A. Le, F. Guo, R. Follett, H. Chen, G. Fiksel, G. Bleotu, R. C. Cauble, S. N. Chen, A. Fazzini, K. Flippo, O. French, D. H. Froula, J. Fuchs, S. Fujioka, K. Hill, S. Klein, C. Kuranz, P. Nilson, A. Rasmus, and R. Takizawa, “Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma,” Nat. Phys. 19, 254 (2023).10.1038/s41567-022-01839-x
    [26]
    X. Yuan, C. Zhou, H. Zhang, R. Li, Y. Ping, and J. Zhong, “Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor–coil target,” Chin. Phys. B 32, 054101 (2023).10.1088/1674-1056/acb911
    [27]
    G. Fiksel, W. Fox, L. Gao, and H. Ji, “A simple model for estimating a magnetic field in laser-driven coils,” Appl. Phys. Lett. 109, 134103 (2016).10.1063/1.4963763
    [28]
    [29]
    W. Wang, H. Cai, J. Teng, J. Chen, S. He, L. Shan, F. Lu, Y. Wu, B. Zhang, W. Hong, B. Bi, F. Zhang, D. Liu, F. Xue, B. Li, H. Liu, W. He, J. Jiao, K. Dong, F. Zhang, Y. He, B. Cui, N. Xie, Z. Yuan, C. Tian, X. Wang, K. Zhou, Z. Deng, Z. Zhang, W. Zhou, L. Cao, B. Zhang, S. Zhu, X. He, and Y. Gu, “Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target,” Phys. Plasmas 25, 083111 (2018).10.1063/1.5000991
    [30]
    M. Hoshino, “Electron surfing acceleration in magnetic reconnection,” J. Geophys. Res. 110, A10215, (2005).10.1029/2005ja011229
    [31]
    D. Ball, L. Sironi, and F. Özel, “Electron and proton acceleration in trans-relativistic magnetic reconnection: Dependence on plasma beta and magnetization,” Astrophys. J. 862, 80 (2018).10.3847/1538-4357/aac820
    [32]
    J. T. Dahlin, J. F. Drake, and M. Swisdak, “The mechanisms of electron heating and acceleration during magnetic reconnection,” Phys. Plasmas 21, 092304 (2014).10.1063/1.4894484
    [33]
    T. G. Northrop, “Adiabatic charged-particle motion,” Rev. Geophys. 1, 283, (1963).10.1029/rg001i003p00283
    [34]
    J. Egedal, W. Daughton, A. Le, and A. L. Borg, “Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within magnetic reconnection exhausts,” Phys. Plasmas 22, 101208 (2015).10.1063/1.4933055
    [35]
    X. Li, F. Guo, H. Li, and G. Li, “Particle acceleration during magnetic reconnection in a low-beta plasma,” Astrophys. J. 843, 21 (2017).10.3847/1538-4357/aa745e
    [36]
    Y. Ping, J. Zhong, X. Wang, B. Han, W. Sun, Y. Zhang, D. Yuan, C. Xing, J. Wang, Z. Liu, Z. Zhang, B. Qiao, H. Zhang, Y. Li, J. Zhu, G. Zhao, and J. Zhang, “Turbulent magnetic reconnection generated by intense lasers,” Nat. Phys. 19, 263 (2023).10.1038/s41567-022-01855-x
    [37]
    H. S. Fu, Y. V. Khotyaintsev, A. Vaivads, A. Retinò, and M. André, “Energetic electron acceleration by unsteady magnetic reconnection,” Nat. Phys. 9, 426–430 (2013).10.1038/nphys2664
    [38]
    Z. H. Zhong, M. Zhou, R. X. Tang, X. H. Deng, D. L. Turner, I. J. Cohen, Y. Pang, H. Y. Man, C. T. Russell, B. L. Giles, W. R. Paterson, Y. Khotyaintsev, and J. L. Burch, “Direct evidence for electron acceleration within ion-scale flux rope,” Geophys. Res. Lett. 47, e2019GL085141, (2020).10.1029/2019gl085141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (67) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return