Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Yang Jing, Du Wei. High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith[J]. Matter and Radiation at Extremes, 2024, 9(2): 027401. doi: 10.1063/5.0148784
Citation: Yang Jing, Du Wei. High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith[J]. Matter and Radiation at Extremes, 2024, 9(2): 027401. doi: 10.1063/5.0148784

High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith

doi: 10.1063/5.0148784
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: duwei@mail.gyig.ac.cn
  • Received Date: 2023-03-02
  • Accepted Date: 2023-11-09
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • Forty-five years after the Apollo and Luna missions, China’s Chang’e-5 (CE-5) mission collected ∼1.73 kg of new lunar materials from one of the youngest basalt units on the Moon. The CE-5 lunar samples provide opportunities to address some key scientific questions related to the Moon, including the discovery of high-pressure silica polymorphs (seifertite and stishovite) and a new lunar mineral, changesite-(Y). Seifertite was found to be coexist with stishovite in a silica fragment from CE-5 lunar regolith. This is the first confirmed seifertite in returned lunar samples. Seifertite has two space group symmetries (Pnc2 and Pbcn) and formed from an α-cristobalite-like phase during “cold” compression during a shock event. The aftershock heating process changes some seifertite to stishovite. Thus, this silica fragment records different stages of an impact process, and the peak shock pressure is estimated to be ∼11 to 40 GPa, which is much lower than the pressure condition for coexistence of seifertite and stishovite on the phase diagram. Changesite-(Y), with ideal formula (Ca8Y)□Fe2+(PO4)7 (where □ denotes a vacancy) is the first new lunar mineral to be discovered in CE-5 regolith samples. This newly identified phosphate mineral is in the form of columnar crystals and was found in CE-5 basalt fragments. It contains high concentrations of Y and rare earth elements (REE), reaching up to ∼14 wt. % (Y,REE)2O3. The occurrence of changesite-(Y) marks the late-stage fractional crystallization processes of CE-5 basalts combined with silicate liquid immiscibility. These new findings demonstrate the significance of studies on high-pressure minerals in lunar materials and the special nature of lunar magmatic evolution.
  • loading
  • [1]
    H. Hiesinger and J. W. Head III, “New views of lunar geoscience: An introduction and overview,” Rev. Mineral. Geochem. 60(1), 1 (2006).10.2138/rmg.2006.60.1
    [2]
    F. Langenhorst and A. Deutsch, “Shock metamorphism of minerals,” Elements 8(1), 31 (2012).10.2113/gselements.8.1.31
    [3]
    D. Stöffler, C. Hamann, and K. Metzler, “Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system,” Meteorit. Planet. Sci. 53(1), 5 (2018).10.1111/maps.12912
    [4]
    P. Gillet and A. E. Goresy, “Shock events in the solar system: The message from minerals in terrestrial planets and asteroids,” Annu. Rev. Earth Planet. Sci. 41(1), 257 (2013).10.1146/annurev-earth-042711-105538
    [5]
    N. Tomioka and M. Miyahara, “High-pressure minerals in shocked meteorites,” Meteorit. Planet. Sci. 52(9), 2017 (2017).10.1111/maps.12902
    [6]
    E. Ohtani, S. Ozawa, M. Miyahara, Y. Ito, T. Mikouchi, M. Kimura, T. Arai, K. Sato, and K. Hiraga, “Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface,” Proc. Natl. Acad. Sci. U. S. A. 108(2), 463 (2011).10.1073/pnas.1009338108
    [7]
    M. Miyahara, S. Kaneko, E. Ohtani, T. Sakai, T. Nagase, M. Kayama, H. Nishido, and N. Hirao, “Discovery of seifertite in a shocked lunar meteorite,” Nat. Commun. 4(1), 1737 (2013).10.1038/ncomms2733
    [8]
    J. Fritz, A. Greshake, M. Klementova, R. Wirth, L. Palatinus, R. G. Trønnes, V. A. Fernandes, U. Böttger, and L. Ferrière, “Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments,” Am. Mineral. 105(11), 1704 (2020).10.2138/am-2020-7393
    [9]
    W. Xing, Y. Lin, C. Zhang, M. Zhang, S. Hu, B. A. Hofmann, T. Sekine, L. Xiao, and L. Gu, “Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169,” Geophys. Res. Lett. 47(21), e2020GL089583, (2020).10.1029/2020gl089583
    [10]
    A.-C. Zhang, Q.-T. Jiang, N. Tomioka, Y.-J. Guo, J.-N. Chen, Y. Li, N. Sakamoto, and H. Yurimoto, “Widespread tissintite in strongly shock-lithified lunar regolith breccias,” Geophys. Res. Lett. 48(5), e2020GL091554, (2021).10.1029/2020gl091554
    [11]
    A.-C. Zhang, W.-B. Hsu, C. Floss, X.-H. Li, Q.-L. Li, Y. Liu, and L. A. Taylor, “Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results,” Meteorit. Planet. Sci. 45(12), 1929 (2010).10.1111/j.1945-5100.2010.01131.x
    [12]
    J. A. Barrat, M. Chaussidon, M. Bohn, P. Gillet, C. Göpel, and M. Lesourd, “Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479),” Geochim. Cosmochim. Acta 69(23), 5597 (2005).10.1016/j.gca.2005.06.032
    [13]
    S. Kaneko, M. Miyahara, E. Ohtani, T. Arai, N. Hirao, and K. Sato, “Discovery of stishovite in Apollo 15299 sample,” Am. Mineral. 100(5-6), 1308 (2015).10.2138/am-2015-5290
    [14]
    T. G. Sharp, A. E. Goresy, B. Wopenka, and M. Chen, “A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events,” Science 284(5419), 1511 (1999).10.1126/science.284.5419.1511
    [15]
    A. E. Goresy, L. Dubrovinsky, T. G. Sharp, S. K. Saxena, and M. Chen, “A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite,” Science 288(5471), 1632 (2000).10.1126/science.288.5471.1632
    [16]
    A. El Goresy, L. Dubrovinsky, T. G. Sharp, and M. Chen, “Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: Their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle,” J. Phys. Chem. Solids 65(8–9), 1597 (2004).10.1016/j.jpcs.2004.02.001
    [17]
    A. El Goresy, P. Dera, T. G. Sharp, C. T. Prewitt, M. Chen, L. Dubrovinsky, B. Wopenka, N. Z. Boctor, and R. J. Hemley, “Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami,” Eur. J. Mineral. 20(4), 523 (2008).10.1127/0935-1221/2008/0020-1812
    [18]
    S. Hu, Y. Li, L. Gu, X. Tang, T. Zhang, A. Yamaguchi, Y. Lin, and H. Changela, “Discovery of coesite from the martian shergottite Northwest Africa 8657,” Geochim. Cosmochim. Acta 286, 404 (2020).10.1016/j.gca.2020.07.021
    [19]
    M. Miyahara, N. Tomioka, and L. Bindi, “Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials,” Prog. Earth Planet. Sci. 8(1), 59 (2021).10.1186/s40645-021-00451-6
    [20]
    [21]
    [22]
    C. Ma, O. Tschauner, J. R. Beckett, G. R. Rossman, C. Prescher, V. B. Prakapenka, H. A. Bechtel, and A. MacDowell, “Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite,” Meteorit. Planet. Sci. 53(1), 50 (2018).10.1111/maps.13000
    [23]
    O. Tschauner, C. Ma, J. G. Spray, E. Greenberg, and V. Prakapenka, “Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856,” Am. Mineral. 106(4), 650 (2021).10.2138/am-2021-7563
    [24]
    P. Beck, P. Gillet, L. Gautron, I. Daniel, and A. El Goresy, “A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites,” Earth Planet. Sci. Lett. 219(1-2), 1 (2004).10.1016/s0012-821x(03)00695-2
    [25]
    A. El Goresy, P. Gillet, M. Miyahara, E. Ohtani, S. Ozawa, P. Beck, and G. Montagnac, “Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars,” Geochim. Cosmochim. Acta 101, 233 (2013).10.1016/j.gca.2012.10.002
    [26]
    I. P. Baziotis, Y. Liu, P. S. DeCarli, H. Jay Melosh, H. Y. McSween, R. J. Bodnar, and L. A. Taylor, “The Tissint Martian meteorite as evidence for the largest impact excavation,” Nat. Commun. 4, 1404 (2013).10.1038/ncomms2414
    [27]
    E. L. Walton, T. G. Sharp, J. Hu, and J. Filiberto, “Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars,” Geochim. Cosmochim. Acta 140, 334 (2014).10.1016/j.gca.2014.05.023
    [28]
    Q. He, L. Xiao, J. B. Balta, I. P. Baziotis, W. Hsu, and Y. Guan, “Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975,” Meteorit. Planet. Sci. 50(12), 2024 (2015).10.1111/maps.12571
    [29]
    D. M. Teter, R. J. Hemley, G. Kresse, and J. Hafner, “High pressure polymorphism in silica,” Phys. Rev. Lett. 80(10), 2145 (1998).10.1103/physrevlett.80.2145
    [30]
    L. S. Dubrovinsky, S. K. Saxena, P. Lazor, R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, “Experimental and theoretical identification of a new high-pressure phase of silica,” Nature 388(6640), 362 (1997).10.1038/41066
    [31]
    L. S. Dubrovinsky, N. A. Dubrovinskaia, S. K. Saxena, F. Tutti, S. Rekhi, T. Le Bihan, G. Shen, and J. Hu, “Pressure-induced transformations of cristobalite,” Chem. Phys. Lett. 333(3–4), 264 (2001).10.1016/s0009-2614(00)01147-7
    [32]
    N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, F. Tutti, S. Rekhi, and T. Le Bihan, “Direct transition from cristobalite to post-stishovite α-PbO2-like silica phase,” Eur. J. Mineral. 13(3), 479 (2001).10.1127/0935-1221/2001/0013-0479
    [33]
    T. Kubo, T. Kato, Y. Higo, and K.-i. Funakoshi, “Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite,” Sci. Adv. 1(4), e1500075 (2015).10.1126/sciadv.1500075
    [34]
    J. Wang, Y. Zhang, K. Di, M. Chen, J. Duan, J. Kong, J. Xie, Z. Liu, W. Wan, Z. Rong, B. Liu, M. Peng, and Y. Wang, “Localization of the Chang’e-5 lander using radio-tracking and image-based methods,” Remote Sens. 13(4), 590 (2021).10.3390/rs13040590
    [35]
    W. Yang and Y. Lin, “New lunar samples returned by Chang’e-5: Opportunities for new discoveries and international collaboration,” Innovation 2(1), 100070 (2021).10.1016/j.xinn.2020.100070
    [36]
    C. Li, H. Hu, M.-F. Yang, Z.-Y. Pei, Q. Zhou, X. Ren, B. Liu, D. Liu, X. Zeng, G. Zhang, H. Zhang, J. Liu, Q. Wang, X. Deng, C. Xiao, Y. Yao, D. Xue, W. Zuo, Y. Su, W. Wen, and Z. Ouyang, “Characteristics of the lunar samples returned by the Chang’E-5 mission,” Natl. Sci. Rev. 9(2), nwab188 (2022).10.1093/nsr/nwab188
    [37]
    X. Che, A. Nemchin, D. Liu, T. Long, C. Wang, M. D. Norman, K. H. Joy, R. Tartese, J. Head, B. Jolliff, J. F. Snape, C. R. Neal, M. J. Whitehouse, C. Crow, G. Benedix, F. Jourdan, Z. Yang, C. Yang, J. Liu, S. Xie, Z. Bao, R. Fan, D. Li, Z. Li, and S. G. Webb, “Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5,” Science 374(6569), 887 (2021).10.1126/science.abl7957
    [38]
    Q.-L. Li, Q. Zhou, Y. Liu, Z. Xiao, Y. Lin, J.-H. Li, H.-X. Ma, G.-Q. Tang, S. Guo, X. Tang, J.-Y. Yuan, J. Li, F.-Y. Wu, Z. Ouyang, C. Li, and X.-H. Li, “Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts,” Nature 600, 54 (2021).10.1038/s41586-021-04100-2
    [39]
    S. Boschi, X.-L. Wang, H. Hui, Z. Yin, Y. Guan, H. Hu, W. Zhang, J. Chen, and W. Li, “Compositional variability of 2.0-Ga lunar basalts at the Chang’e-5 landing site,” J. Geophys. Res.: Planets 128(5), e2022JE007627, (2023).10.1029/2022je007627
    [40]
    T. Long, Y. Qian, M. D. Norman, K. Miljkovic, C. Crow, J. W. Head, X. Che, R. Tartèse, N. Zellner, X. Yu, S. Xie, M. Whitehouse, K. H. Joy, C. R. Neal, J. F. Snape, G. Zhou, S. Liu, C. Yang, Z. Yang, C. Wang, L. Xiao, D. Liu, and A. Nemchin, “Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads,” Sci. Adv. 8(39), eabq2542 (2022).10.1126/sciadv.abq2542
    [41]
    W. Yang, Y. Chen, H. Wang, H.-C. Tian, H. Hui, Z. Xiao, S.-T. Wu, D. Zhang, Q. Zhou, H.-X. Ma, C. Zhang, S. Hu, Q.-L. Li, Y. Lin, X.-H. Li, and F.-Y. Wu, “Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt,” Geochim. Cosmochim. Acta 335, 183 (2022).10.1016/j.gca.2022.08.030
    [42]
    K. Zong, Z. Wang, J. Li, Q. He, Y. Li, H. Becker, W. Zhang, Z. Hu, T. He, K. Cao, Z. She, X. Wu, L. Xiao, and Y. Liu, “Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts,” Geochim. Cosmochim. Acta 335, 284 (2022).10.1016/j.gca.2022.06.037
    [43]
    R. Pang, J. Yang, W. Du, A. Zhang, S. Liu, and R. Li, “New occurrence of seifertite and stishovite in Chang’E-5 regolith,” Geophys. Res. Lett. 49(12), e2022GL098722, (2022).10.1029/2022gl098722
    [44]
    A. Černok, K. Marquardt, R. Caracas, E. Bykova, G. Habler, H.-P. Liermann, M. Hanfland, M. Mezouar, E. Bobocioiu, and L. S. Dubrovinsky, “Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation,” Nat. Commun. 8(1), 15647 (2017).10.1038/ncomms15647
    [45]
    Y. Qian, L. Xiao, J. W. Head, C. H. van der Bogert, H. Hiesinger, and L. Wilson, “Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum,” Earth Planet. Sci. Lett. 555, 116702 (2021).10.1016/j.epsl.2020.116702
    [46]
    Y. Qian, L. Xiao, J. W. Head, C. Wöhler, R. Bugiolacchi, T. Wilhelm, S. Althoff, B. Ye, Q. He, Y. Yuan, and S. Zhao, “Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models,” Geophys. Res. Lett. 48(20), e2021GL095341, (2021).10.1029/2021gl095341
    [47]
    Y. Qian, L. Xiao, Q. Wang, J. W. Head, R. Yang, Y. Kang, C. H. van der Bogert, H. Hiesinger, X. Lai, G. Wang, Y. Pang, N. Zhang, Y. Yuan, Q. He, J. Huang, J. Zhao, J. Wang, and S. Zhao, “China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials,” Earth Planet. Sci. Lett. 561, 116855 (2021).10.1016/j.epsl.2021.116855
    [48]
    H.-C. Tian, H. Wang, Y. Chen, W. Yang, Q. Zhou, C. Zhang, H.-L. Lin, C. Huang, S.-T. Wu, L.-H. Jia, L. Xu, D. Zhang, X.-G. Li, R. Chang, Y.-H. Yang, L.-W. Xie, D.-P. Zhang, G.-L. Zhang, S.-H. Yang, and F.-Y. Wu, “Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane,” Nature 600, 59 (2021).10.1038/s41586-021-04119-5
    [49]
    H.-C. Tian, W. Yang, D. Zhang, H. Zhang, L. Jia, S. Wu, Y. Lin, X. Li, and F. Wu, “Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase,” Am. Mineral. 108(9), 1669 (2023).10.2138/am-2022-8570
    [50]
    Q. He, Y. Li, I. Baziotis, Y. Qian, L. Xiao, Z. Wang, W. Zhang, B. Luo, C. R. Neal, J. M. D. Day, F. Pan, Z. She, X. Wu, Z. Hu, K. Zong, and L. Wang, “Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts,” Icarus 383, 115082 (2022).10.1016/j.icarus.2022.115082
    [51]
    R. Miyawaki, F. Hatert, M. Pasero, and S. J. Mills, “IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69,” Eur. J. Mineral. 34, 463 (2022).10.5194/ejm-34-463-2022
    [52]
    B. L. Jolliff, L. A. Haskin, R. O. Colson, and M. Wadhwa, “Partitioning in REE-saturating minerals: Theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas,” Geochim. Cosmochim. Acta 57(16), 4069 (1993).10.1016/0016-7037(93)90354-y
    [53]
    J. M. Hughes, B. L. Jolliff, and M. E. Gunter, “The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: The first structure of merrillite from the Moon,” Am. Mineral. 91(10), 1547 (2006).10.2138/am.2006.2021
    [54]
    B. L. Jolliff, J. M. Hughes, J. J. Freeman, and R. A. Zeigler, “Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite,” Am. Mineral. 91(10), 1583 (2006).10.2138/am.2006.2185
    [55]
    J. F. Pernet-Fisher, G. H. Howarth, Y. Liu, Y. Chen, and L. A. Taylor, “Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility,” Geochim. Cosmochim. Acta 144, 326 (2014).10.1016/j.gca.2014.09.004
    [56]
    A. M. Álvarez-Valero, J. F. Pernet-Fisher, and L. M. Kriegsman, “Petrologic history of lunar phosphates accounts for the water content of the Moon’s mare basalts,” Geosciences 9(10), 421 (2019).10.3390/geosciences9100421
    [57]
    N. J. Potts, R. Tartèse, M. Anand, W. van Westrenen, A. A. Griffiths, T. J. Barrett, and I. A. Franchi, “Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation,” Meteorit. Planet. Sci. 51(9), 1555 (2016).10.1111/maps.12681
    [58]
    J. Yang, D. Ju, R. Pang, R. Li, J. Liu, and W. Du, “Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith,” Geochim. Cosmochim. Acta 340, 189 (2023).10.1016/j.gca.2022.11.008
    [59]
    C. R. Neal and L. A. Taylor, “Lunar granite petrogenesis and the process of silicate liquid immiscibility: The barium problem,” in Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, edited by G. J. Taylor and P. H. Warren (LPI Contribution, 1989), p. 89.
    [60]
    [61]
    C. K. Shearer, J. J. Papike, and M. N. Spilde, “Trace-element partitioning between immiscible lunar melts: An example from naturally occurring lunar melt inclusions,” Am. Mineral. 86(3), 238 (2001).10.2138/am-2001-2-305
    [62]
    I. V. Veksler and B. Charlier, in Silicate Liquid Immiscibility in Layered Intrusions, Layered Intrusions, edited by B. Charlier, O. Namur, R. Latypov, and C. Tegner (Springer Netherlands, Dordrecht, 2015), p. 229.
    [63]
    A. L. Gullikson, J. J. Hagerty, M. R. Reid, J. F. Rapp, and D. S. Draper, “Silicic lunar volcanism: Testing the crustal melting model,” Am. Mineral. 101(10), 2312 (2016).10.2138/am-2016-5619
    [64]
    [65]
    [66]
    B. Charlier and T. L. Grove, “Experiments on liquid immiscibility along tholeiitic liquid lines of descent,” Contrib. Mineral. Petrol. 164(1), 27 (2012).10.1007/s00410-012-0723-y
    [67]
    H. J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, 1989).
    [68]
    M. Zanetti, A. Stadermann, B. Jolliff, H. Hiesinger, C. H. van der Bogert, and J. Plescia, “Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon,” Icarus 298, 64 (2017).10.1016/j.icarus.2017.01.030
    [69]
    T. D. Glotch, P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles, M. B. Wyatt, C. C. Allen, K. D. Hanna, and D. A. Paige, “Highly silicic compositions on the Moon,” Science 329(5998), 1510 (2010).10.1126/science.1192148
    [70]
    R. N. Clegg-Watkins, B. L. Jolliff, M. J. Watkins, E. Coman, T. A. Giguere, J. D. Stopar, and S. J. Lawrence, “Nonmare volcanism on the Moon: Photometric evidence for the presence of evolved silicic materials,” Icarus 285, 169 (2017).10.1016/j.icarus.2016.12.004
    [71]
    T. D. Glotch, E. R. Jawin, B. T. Greenhagen, J. T. Cahill, D. J. Lawrence, R. N. Watkins, D. P. Moriarty, N. Kumari, S. Li, P. G. Lucey et al., “The scientific value of a sustained exploration program at the Aristarchus plateau,” Planet. Sci. J. 2, 136 (2021).10.3847/psj/abfec6
    [72]
    J. Hu and T. G. Sharp, “Formation, preservation and extinction of high-pressure minerals in meteorites: Temperature effects in shock metamorphism and shock classification,” Prog. Earth Planet. Sci. 9(1), 6 (2022).10.1186/s40645-021-00463-2
    [73]
    O. Tschauner and C. Ma, “Discovering high-pressure and high-temperature minerals,” in Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, edited by L. Bindi and G. Cruciani (Springer Nature Switzerland, Cham, 2023), p. 169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (145) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return