Citation: | Yang Jing, Du Wei. High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith[J]. Matter and Radiation at Extremes, 2024, 9(2): 027401. doi: 10.1063/5.0148784 |
[1] |
H. Hiesinger and J. W. Head III, “New views of lunar geoscience: An introduction and overview,” Rev. Mineral. Geochem. 60(1), 1 (2006).10.2138/rmg.2006.60.1
|
[2] |
F. Langenhorst and A. Deutsch, “Shock metamorphism of minerals,” Elements 8(1), 31 (2012).10.2113/gselements.8.1.31
|
[3] |
D. Stöffler, C. Hamann, and K. Metzler, “Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system,” Meteorit. Planet. Sci. 53(1), 5 (2018).10.1111/maps.12912
|
[4] |
P. Gillet and A. E. Goresy, “Shock events in the solar system: The message from minerals in terrestrial planets and asteroids,” Annu. Rev. Earth Planet. Sci. 41(1), 257 (2013).10.1146/annurev-earth-042711-105538
|
[5] |
N. Tomioka and M. Miyahara, “High-pressure minerals in shocked meteorites,” Meteorit. Planet. Sci. 52(9), 2017 (2017).10.1111/maps.12902
|
[6] |
E. Ohtani, S. Ozawa, M. Miyahara, Y. Ito, T. Mikouchi, M. Kimura, T. Arai, K. Sato, and K. Hiraga, “Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface,” Proc. Natl. Acad. Sci. U. S. A. 108(2), 463 (2011).10.1073/pnas.1009338108
|
[7] |
M. Miyahara, S. Kaneko, E. Ohtani, T. Sakai, T. Nagase, M. Kayama, H. Nishido, and N. Hirao, “Discovery of seifertite in a shocked lunar meteorite,” Nat. Commun. 4(1), 1737 (2013).10.1038/ncomms2733
|
[8] |
J. Fritz, A. Greshake, M. Klementova, R. Wirth, L. Palatinus, R. G. Trønnes, V. A. Fernandes, U. Böttger, and L. Ferrière, “Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments,” Am. Mineral. 105(11), 1704 (2020).10.2138/am-2020-7393
|
[9] |
W. Xing, Y. Lin, C. Zhang, M. Zhang, S. Hu, B. A. Hofmann, T. Sekine, L. Xiao, and L. Gu, “Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169,” Geophys. Res. Lett. 47(21), e2020GL089583, (2020).10.1029/2020gl089583
|
[10] |
A.-C. Zhang, Q.-T. Jiang, N. Tomioka, Y.-J. Guo, J.-N. Chen, Y. Li, N. Sakamoto, and H. Yurimoto, “Widespread tissintite in strongly shock-lithified lunar regolith breccias,” Geophys. Res. Lett. 48(5), e2020GL091554, (2021).10.1029/2020gl091554
|
[11] |
A.-C. Zhang, W.-B. Hsu, C. Floss, X.-H. Li, Q.-L. Li, Y. Liu, and L. A. Taylor, “Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results,” Meteorit. Planet. Sci. 45(12), 1929 (2010).10.1111/j.1945-5100.2010.01131.x
|
[12] |
J. A. Barrat, M. Chaussidon, M. Bohn, P. Gillet, C. Göpel, and M. Lesourd, “Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479),” Geochim. Cosmochim. Acta 69(23), 5597 (2005).10.1016/j.gca.2005.06.032
|
[13] |
S. Kaneko, M. Miyahara, E. Ohtani, T. Arai, N. Hirao, and K. Sato, “Discovery of stishovite in Apollo 15299 sample,” Am. Mineral. 100(5-6), 1308 (2015).10.2138/am-2015-5290
|
[14] |
T. G. Sharp, A. E. Goresy, B. Wopenka, and M. Chen, “A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events,” Science 284(5419), 1511 (1999).10.1126/science.284.5419.1511
|
[15] |
A. E. Goresy, L. Dubrovinsky, T. G. Sharp, S. K. Saxena, and M. Chen, “A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite,” Science 288(5471), 1632 (2000).10.1126/science.288.5471.1632
|
[16] |
A. El Goresy, L. Dubrovinsky, T. G. Sharp, and M. Chen, “Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: Their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle,” J. Phys. Chem. Solids 65(8–9), 1597 (2004).10.1016/j.jpcs.2004.02.001
|
[17] |
A. El Goresy, P. Dera, T. G. Sharp, C. T. Prewitt, M. Chen, L. Dubrovinsky, B. Wopenka, N. Z. Boctor, and R. J. Hemley, “Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami,” Eur. J. Mineral. 20(4), 523 (2008).10.1127/0935-1221/2008/0020-1812
|
[18] |
S. Hu, Y. Li, L. Gu, X. Tang, T. Zhang, A. Yamaguchi, Y. Lin, and H. Changela, “Discovery of coesite from the martian shergottite Northwest Africa 8657,” Geochim. Cosmochim. Acta 286, 404 (2020).10.1016/j.gca.2020.07.021
|
[19] |
M. Miyahara, N. Tomioka, and L. Bindi, “Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials,” Prog. Earth Planet. Sci. 8(1), 59 (2021).10.1186/s40645-021-00451-6
|
[20] | |
[21] | |
[22] |
C. Ma, O. Tschauner, J. R. Beckett, G. R. Rossman, C. Prescher, V. B. Prakapenka, H. A. Bechtel, and A. MacDowell, “Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite,” Meteorit. Planet. Sci. 53(1), 50 (2018).10.1111/maps.13000
|
[23] |
O. Tschauner, C. Ma, J. G. Spray, E. Greenberg, and V. Prakapenka, “Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856,” Am. Mineral. 106(4), 650 (2021).10.2138/am-2021-7563
|
[24] |
P. Beck, P. Gillet, L. Gautron, I. Daniel, and A. El Goresy, “A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites,” Earth Planet. Sci. Lett. 219(1-2), 1 (2004).10.1016/s0012-821x(03)00695-2
|
[25] |
A. El Goresy, P. Gillet, M. Miyahara, E. Ohtani, S. Ozawa, P. Beck, and G. Montagnac, “Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars,” Geochim. Cosmochim. Acta 101, 233 (2013).10.1016/j.gca.2012.10.002
|
[26] |
I. P. Baziotis, Y. Liu, P. S. DeCarli, H. Jay Melosh, H. Y. McSween, R. J. Bodnar, and L. A. Taylor, “The Tissint Martian meteorite as evidence for the largest impact excavation,” Nat. Commun. 4, 1404 (2013).10.1038/ncomms2414
|
[27] |
E. L. Walton, T. G. Sharp, J. Hu, and J. Filiberto, “Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars,” Geochim. Cosmochim. Acta 140, 334 (2014).10.1016/j.gca.2014.05.023
|
[28] |
Q. He, L. Xiao, J. B. Balta, I. P. Baziotis, W. Hsu, and Y. Guan, “Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975,” Meteorit. Planet. Sci. 50(12), 2024 (2015).10.1111/maps.12571
|
[29] |
D. M. Teter, R. J. Hemley, G. Kresse, and J. Hafner, “High pressure polymorphism in silica,” Phys. Rev. Lett. 80(10), 2145 (1998).10.1103/physrevlett.80.2145
|
[30] |
L. S. Dubrovinsky, S. K. Saxena, P. Lazor, R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, “Experimental and theoretical identification of a new high-pressure phase of silica,” Nature 388(6640), 362 (1997).10.1038/41066
|
[31] |
L. S. Dubrovinsky, N. A. Dubrovinskaia, S. K. Saxena, F. Tutti, S. Rekhi, T. Le Bihan, G. Shen, and J. Hu, “Pressure-induced transformations of cristobalite,” Chem. Phys. Lett. 333(3–4), 264 (2001).10.1016/s0009-2614(00)01147-7
|
[32] |
N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, F. Tutti, S. Rekhi, and T. Le Bihan, “Direct transition from cristobalite to post-stishovite α-PbO2-like silica phase,” Eur. J. Mineral. 13(3), 479 (2001).10.1127/0935-1221/2001/0013-0479
|
[33] |
T. Kubo, T. Kato, Y. Higo, and K.-i. Funakoshi, “Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite,” Sci. Adv. 1(4), e1500075 (2015).10.1126/sciadv.1500075
|
[34] |
J. Wang, Y. Zhang, K. Di, M. Chen, J. Duan, J. Kong, J. Xie, Z. Liu, W. Wan, Z. Rong, B. Liu, M. Peng, and Y. Wang, “Localization of the Chang’e-5 lander using radio-tracking and image-based methods,” Remote Sens. 13(4), 590 (2021).10.3390/rs13040590
|
[35] |
W. Yang and Y. Lin, “New lunar samples returned by Chang’e-5: Opportunities for new discoveries and international collaboration,” Innovation 2(1), 100070 (2021).10.1016/j.xinn.2020.100070
|
[36] |
C. Li, H. Hu, M.-F. Yang, Z.-Y. Pei, Q. Zhou, X. Ren, B. Liu, D. Liu, X. Zeng, G. Zhang, H. Zhang, J. Liu, Q. Wang, X. Deng, C. Xiao, Y. Yao, D. Xue, W. Zuo, Y. Su, W. Wen, and Z. Ouyang, “Characteristics of the lunar samples returned by the Chang’E-5 mission,” Natl. Sci. Rev. 9(2), nwab188 (2022).10.1093/nsr/nwab188
|
[37] |
X. Che, A. Nemchin, D. Liu, T. Long, C. Wang, M. D. Norman, K. H. Joy, R. Tartese, J. Head, B. Jolliff, J. F. Snape, C. R. Neal, M. J. Whitehouse, C. Crow, G. Benedix, F. Jourdan, Z. Yang, C. Yang, J. Liu, S. Xie, Z. Bao, R. Fan, D. Li, Z. Li, and S. G. Webb, “Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5,” Science 374(6569), 887 (2021).10.1126/science.abl7957
|
[38] |
Q.-L. Li, Q. Zhou, Y. Liu, Z. Xiao, Y. Lin, J.-H. Li, H.-X. Ma, G.-Q. Tang, S. Guo, X. Tang, J.-Y. Yuan, J. Li, F.-Y. Wu, Z. Ouyang, C. Li, and X.-H. Li, “Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts,” Nature 600, 54 (2021).10.1038/s41586-021-04100-2
|
[39] |
S. Boschi, X.-L. Wang, H. Hui, Z. Yin, Y. Guan, H. Hu, W. Zhang, J. Chen, and W. Li, “Compositional variability of 2.0-Ga lunar basalts at the Chang’e-5 landing site,” J. Geophys. Res.: Planets 128(5), e2022JE007627, (2023).10.1029/2022je007627
|
[40] |
T. Long, Y. Qian, M. D. Norman, K. Miljkovic, C. Crow, J. W. Head, X. Che, R. Tartèse, N. Zellner, X. Yu, S. Xie, M. Whitehouse, K. H. Joy, C. R. Neal, J. F. Snape, G. Zhou, S. Liu, C. Yang, Z. Yang, C. Wang, L. Xiao, D. Liu, and A. Nemchin, “Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads,” Sci. Adv. 8(39), eabq2542 (2022).10.1126/sciadv.abq2542
|
[41] |
W. Yang, Y. Chen, H. Wang, H.-C. Tian, H. Hui, Z. Xiao, S.-T. Wu, D. Zhang, Q. Zhou, H.-X. Ma, C. Zhang, S. Hu, Q.-L. Li, Y. Lin, X.-H. Li, and F.-Y. Wu, “Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt,” Geochim. Cosmochim. Acta 335, 183 (2022).10.1016/j.gca.2022.08.030
|
[42] |
K. Zong, Z. Wang, J. Li, Q. He, Y. Li, H. Becker, W. Zhang, Z. Hu, T. He, K. Cao, Z. She, X. Wu, L. Xiao, and Y. Liu, “Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts,” Geochim. Cosmochim. Acta 335, 284 (2022).10.1016/j.gca.2022.06.037
|
[43] |
R. Pang, J. Yang, W. Du, A. Zhang, S. Liu, and R. Li, “New occurrence of seifertite and stishovite in Chang’E-5 regolith,” Geophys. Res. Lett. 49(12), e2022GL098722, (2022).10.1029/2022gl098722
|
[44] |
A. Černok, K. Marquardt, R. Caracas, E. Bykova, G. Habler, H.-P. Liermann, M. Hanfland, M. Mezouar, E. Bobocioiu, and L. S. Dubrovinsky, “Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation,” Nat. Commun. 8(1), 15647 (2017).10.1038/ncomms15647
|
[45] |
Y. Qian, L. Xiao, J. W. Head, C. H. van der Bogert, H. Hiesinger, and L. Wilson, “Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum,” Earth Planet. Sci. Lett. 555, 116702 (2021).10.1016/j.epsl.2020.116702
|
[46] |
Y. Qian, L. Xiao, J. W. Head, C. Wöhler, R. Bugiolacchi, T. Wilhelm, S. Althoff, B. Ye, Q. He, Y. Yuan, and S. Zhao, “Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models,” Geophys. Res. Lett. 48(20), e2021GL095341, (2021).10.1029/2021gl095341
|
[47] |
Y. Qian, L. Xiao, Q. Wang, J. W. Head, R. Yang, Y. Kang, C. H. van der Bogert, H. Hiesinger, X. Lai, G. Wang, Y. Pang, N. Zhang, Y. Yuan, Q. He, J. Huang, J. Zhao, J. Wang, and S. Zhao, “China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials,” Earth Planet. Sci. Lett. 561, 116855 (2021).10.1016/j.epsl.2021.116855
|
[48] |
H.-C. Tian, H. Wang, Y. Chen, W. Yang, Q. Zhou, C. Zhang, H.-L. Lin, C. Huang, S.-T. Wu, L.-H. Jia, L. Xu, D. Zhang, X.-G. Li, R. Chang, Y.-H. Yang, L.-W. Xie, D.-P. Zhang, G.-L. Zhang, S.-H. Yang, and F.-Y. Wu, “Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane,” Nature 600, 59 (2021).10.1038/s41586-021-04119-5
|
[49] |
H.-C. Tian, W. Yang, D. Zhang, H. Zhang, L. Jia, S. Wu, Y. Lin, X. Li, and F. Wu, “Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase,” Am. Mineral. 108(9), 1669 (2023).10.2138/am-2022-8570
|
[50] |
Q. He, Y. Li, I. Baziotis, Y. Qian, L. Xiao, Z. Wang, W. Zhang, B. Luo, C. R. Neal, J. M. D. Day, F. Pan, Z. She, X. Wu, Z. Hu, K. Zong, and L. Wang, “Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts,” Icarus 383, 115082 (2022).10.1016/j.icarus.2022.115082
|
[51] |
R. Miyawaki, F. Hatert, M. Pasero, and S. J. Mills, “IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69,” Eur. J. Mineral. 34, 463 (2022).10.5194/ejm-34-463-2022
|
[52] |
B. L. Jolliff, L. A. Haskin, R. O. Colson, and M. Wadhwa, “Partitioning in REE-saturating minerals: Theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas,” Geochim. Cosmochim. Acta 57(16), 4069 (1993).10.1016/0016-7037(93)90354-y
|
[53] |
J. M. Hughes, B. L. Jolliff, and M. E. Gunter, “The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: The first structure of merrillite from the Moon,” Am. Mineral. 91(10), 1547 (2006).10.2138/am.2006.2021
|
[54] |
B. L. Jolliff, J. M. Hughes, J. J. Freeman, and R. A. Zeigler, “Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite,” Am. Mineral. 91(10), 1583 (2006).10.2138/am.2006.2185
|
[55] |
J. F. Pernet-Fisher, G. H. Howarth, Y. Liu, Y. Chen, and L. A. Taylor, “Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility,” Geochim. Cosmochim. Acta 144, 326 (2014).10.1016/j.gca.2014.09.004
|
[56] |
A. M. Álvarez-Valero, J. F. Pernet-Fisher, and L. M. Kriegsman, “Petrologic history of lunar phosphates accounts for the water content of the Moon’s mare basalts,” Geosciences 9(10), 421 (2019).10.3390/geosciences9100421
|
[57] |
N. J. Potts, R. Tartèse, M. Anand, W. van Westrenen, A. A. Griffiths, T. J. Barrett, and I. A. Franchi, “Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation,” Meteorit. Planet. Sci. 51(9), 1555 (2016).10.1111/maps.12681
|
[58] |
J. Yang, D. Ju, R. Pang, R. Li, J. Liu, and W. Du, “Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith,” Geochim. Cosmochim. Acta 340, 189 (2023).10.1016/j.gca.2022.11.008
|
[59] |
C. R. Neal and L. A. Taylor, “Lunar granite petrogenesis and the process of silicate liquid immiscibility: The barium problem,” in Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, edited by G. J. Taylor and P. H. Warren (LPI Contribution, 1989), p. 89.
|
[60] | |
[61] |
C. K. Shearer, J. J. Papike, and M. N. Spilde, “Trace-element partitioning between immiscible lunar melts: An example from naturally occurring lunar melt inclusions,” Am. Mineral. 86(3), 238 (2001).10.2138/am-2001-2-305
|
[62] |
I. V. Veksler and B. Charlier, in Silicate Liquid Immiscibility in Layered Intrusions, Layered Intrusions, edited by B. Charlier, O. Namur, R. Latypov, and C. Tegner (Springer Netherlands, Dordrecht, 2015), p. 229.
|
[63] |
A. L. Gullikson, J. J. Hagerty, M. R. Reid, J. F. Rapp, and D. S. Draper, “Silicic lunar volcanism: Testing the crustal melting model,” Am. Mineral. 101(10), 2312 (2016).10.2138/am-2016-5619
|
[64] | |
[65] | |
[66] |
B. Charlier and T. L. Grove, “Experiments on liquid immiscibility along tholeiitic liquid lines of descent,” Contrib. Mineral. Petrol. 164(1), 27 (2012).10.1007/s00410-012-0723-y
|
[67] |
H. J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, 1989).
|
[68] |
M. Zanetti, A. Stadermann, B. Jolliff, H. Hiesinger, C. H. van der Bogert, and J. Plescia, “Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon,” Icarus 298, 64 (2017).10.1016/j.icarus.2017.01.030
|
[69] |
T. D. Glotch, P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles, M. B. Wyatt, C. C. Allen, K. D. Hanna, and D. A. Paige, “Highly silicic compositions on the Moon,” Science 329(5998), 1510 (2010).10.1126/science.1192148
|
[70] |
R. N. Clegg-Watkins, B. L. Jolliff, M. J. Watkins, E. Coman, T. A. Giguere, J. D. Stopar, and S. J. Lawrence, “Nonmare volcanism on the Moon: Photometric evidence for the presence of evolved silicic materials,” Icarus 285, 169 (2017).10.1016/j.icarus.2016.12.004
|
[71] |
T. D. Glotch, E. R. Jawin, B. T. Greenhagen, J. T. Cahill, D. J. Lawrence, R. N. Watkins, D. P. Moriarty, N. Kumari, S. Li, P. G. Lucey et al., “The scientific value of a sustained exploration program at the Aristarchus plateau,” Planet. Sci. J. 2, 136 (2021).10.3847/psj/abfec6
|
[72] |
J. Hu and T. G. Sharp, “Formation, preservation and extinction of high-pressure minerals in meteorites: Temperature effects in shock metamorphism and shock classification,” Prog. Earth Planet. Sci. 9(1), 6 (2022).10.1186/s40645-021-00463-2
|
[73] |
O. Tschauner and C. Ma, “Discovering high-pressure and high-temperature minerals,” in Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, edited by L. Bindi and G. Cruciani (Springer Nature Switzerland, Cham, 2023), p. 169.
|