Citation: | Wang Zhao, Cheng Rui, Wang Guodong, Jin Xuejian, Tang Yong, Chen Yanhong, Zhou Zexian, Shi Lulin, Wang Yuyu, Lei Yu, Wu Xiaoxia, Yang Jie. Observation of plasma dynamics in a theta pinch by a novel method[J]. Matter and Radiation at Extremes, 2023, 8(4): 045901. doi: 10.1063/5.0144921 |
[1] |
A. H. Boozer, “Physics of magnetically confined plasmas,” Rev. Mod. Phys. 76, 1071 (2004).10.1103/RevModPhys.76.1071
|
[2] |
A. Hasegawa, H. Daido, M. Fujita et al., “Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion,” Phys. Rev. Lett. 56, 139 (1986).10.1103/physrevlett.56.139
|
[3] |
J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
|
[4] |
I. R. Lindemuth and R. C. Kirkpatrick, “Parameter space for magnetized fuel targets in inertial confinement fusion,” Nucl. Fusion 23, 263–284 (1983).10.1088/0029-5515/23/3/001
|
[5] |
J. D. Sadler, H. Li, and K. A. Flippo, “Parameter space for magnetization effects in high-energy-density plasmas,” Matter Radiat. Extremes 6, 065902 (2021).10.1063/5.0057087
|
[6] |
F. García-Rubio, A. Ruocco, and J. Sanz, “Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field,” Phys. Plasmas 23, 012103 (2016).10.1063/1.4939476
|
[7] |
I. R. Lindemuth, “Magnetohydrodynamic behavior of thermonuclear fuel in a preconditioned electron beam imploded target,” Phys. Fluids 24, 746 (1981).10.1063/1.863415
|
[8] |
S. Molokov, R. Moreau and K. Moffatt, Magnetohydrodynamics (Springer, The Netherlands, Dordrecht, 2007).
|
[9] |
J. D. Moody, B. B. Pollock, H. Sio et al., “Increased ion temperature and neutron yield observed in magnetized indirectly driven D2-filled capsule implosions on the national ignition facility,” Phys. Rev. Lett. 129, 195002 (2022).10.1103/physrevlett.129.195002
|
[10] |
S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/PhysRevLett.108.025003
|
[11] |
G. A. Wurden, S. C. Hsu, T. P. Intrator et al., “Magneto-inertial fusion,” J. Fusion Energy 35, 69–77 (2015).10.1007/s10894-015-0038-x
|
[12] |
L. J. Perkins, D. D. M. Ho, B. G. Logan et al., “The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion,” Phys. Plasmas 24, 062708 (2017).10.1063/1.4985150
|
[13] |
M. R. Gomez, S. A. Slutz, A. B. Sefkow et al., “Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion,” Phys. Rev. Lett. 113, 155003 (2014).10.1103/physrevlett.113.155003
|
[14] |
C. Arran, C. P. Ridgers, and N. C. Woolsey, “Proton radiography in background magnetic fields,” Matter Radiat. Extremes 6, 046904 (2021).10.1063/5.0054172
|
[15] |
R. D. Jones and W. C. Mead, “The physics of burn in magnetized deuterium-tritium plasmas: Spherical geometry,” Nucl. Fusion 26, 127–137 (1986).10.1088/0029-5515/26/2/001
|
[16] |
J. D. Sadler, S. Green, S. Li et al., “Faster ablative Kelvin–Helmholtz instability growth in a magnetic field,” Phys. Plasmas 29, 052708 (2022).10.1063/5.0082610
|
[17] |
M. E. Cuneo, M. C. Herrmann, D. B. Sinars et al., “Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories,” IEEE Trans. Plasma Sci. 40, 3222–3245 (2012).10.1109/tps.2012.2223488
|
[18] |
P. C. Campbell, T. M. Jones, J. M. Woolstrum et al., “Stabilization of liner implosions via a dynamic screw pinch,” Phys. Rev. Lett. 125, 035001 (2020).10.1103/PhysRevLett.125.035001
|
[19] |
M. Hohenberger, P. Y. Chang, G. Fiksel et al., “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser,” Phys. Plasmas 19, 056306 (2012).10.1063/1.3696032
|
[20] |
W. B. Thompson, Physics of Hot Plasmas (Springer-Verlag, Boston, USA, 1968).
|
[21] |
R. C. Davidson and N. A. Krall, “Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems,” Nucl. Fusion 17, 1313 (1977).10.1088/0029-5515/17/6/017
|
[22] |
N. L. Bretz and A. W. DeSilva, “Turbulence spectrum observed in a collision-free theta-pinch plasma by CO2 laser scattering,” Phys. Rev. Lett. 32, 138–141 (1974).10.1103/physrevlett.32.138
|
[23] |
A. W. DeSilva and J. A. Stamper, “Observation of anomalous electron heating in plasma shock waves,” Phys. Rev. Lett. 19, 1027–1030 (1967).10.1103/physrevlett.19.1027
|
[24] |
K. F. McKenna, R. Kristal, and K. S. Thomas, “Measurements of plasma density distribution and current-sheath in the implosion phase of a theta-pinch discharge,” Phys. Rev. Lett. 32, 409–412 (1974).10.1103/physrevlett.32.409
|
[25] |
V. Josephson, M. H. Dazey, and R. F. Wuerker, “Instability mechanisms in transverse pinches,” Phys. Rev. Lett. 5, 416 (1961).10.1103/physrevlett.5.416
|
[26] |
V. Josephson, M. H. Dazey, and R. F. Wuerker, “A neutron-producing mechanism in transverse pinches,” Phys. Rev. 121, 674 (1961).10.1103/physrev.121.674
|
[27] |
M. E. Kayama, R. A. Clemente, R. Y. Honda, and M. S. Dobrowolsky, “Radial plasma dynamic in sequential pinches,” IEEE Trans. Plasma Sci. 37, 2186–2190 (2009).10.1109/tps.2009.2031868
|
[28] |
P. Christ, Y. Bonilla Guzmán, C. Cistakov et al., “Time-resolved measurement of the free electron and neutral gas line density in a hydrogen theta-pinch plasma target by two-color interferometry,” J. Phys. D: Appl. Phys. 55, 185204 (2022).10.1088/1361-6463/ac4f90
|
[29] |
A. A. Newton, “Area waves in a theta pinch,” Nucl. Fusion 8, 93–97 (1968).10.1088/0029-5515/8/2/003
|
[30] |
K. F. McKenna and T. M. York, “End loss from a collision dominated theta pinch plasma,” Phys. Fluids 20, 1556 (1977).10.1063/1.862056
|
[31] |
T. M. York, B. A. Jacoby, and P. Mikellides, “Plasma flow processes within magnetic nozzle configurations,” J. Propul. Power 8, 1023–1030 (1992).10.2514/3.23588
|
[32] |
J. E. Heidrich, T. M. York, J. W. Robinson, and E. H. Klevans, “Transient loss from a theta pinch with an initial trapped reverse magnetic field,” Plasma Phys. 24, 1243 (1982).10.1088/0032-1028/24/10/003
|
[33] |
C. Grabowski, J. H. Degnan, D. J. Amdahl et al., “Addressing short trapped-flux lifetime in high-density field-reversed configuration plasmas in FRCHX,” IEEE Trans. Plasma Sci. 42, 1179–1188 (2014).10.1109/tps.2014.2305402
|
[34] |
M. J. E. Manuel, B. Khiar, G. Rigon et al., “On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas,” Matter Radiat. Extremes 6, 026904 (2021).10.1063/5.0025374
|
[35] | |
[36] |
E. K. Stover, E. H. Klevans, and T. M. York, “Computer modeling of linear theta pinch machines,” Phys. Fluids 21, 2090 (1978).10.1063/1.862116
|
[37] |
S. Lee, S. H. Saw, P. C. K. Lee et al., “A model code for the radiative theta pinch,” Phys. Plasmas 21, 072501 (2014).10.1063/1.4886359
|
[38] |
S. Chaisombat, D. Ngamrungroj, P. Tangjitsomboon, and R. Mongkolnavin, “Determination of plasma electron temperature in a pulsed inductively coupled plasma (PICP) device,” Procedia Eng. 32, 929–935 (2012).10.1016/j.proeng.2012.02.034
|
[39] |
J. B. Taylor and J. A. Wesson, “End losses from a theta pinch,” Nucl. Fusion 5, 159 (1965).10.1088/0029-5515/5/2/008
|
[40] |
J. P. Freidberg and H. Weitzner, “Endloss from a linear theta pinch,” Nucl. Fusion 15, 217 (1975).10.1088/0029-5515/15/2/006
|
[41] |
G. Loisch, G. Xu, A. Blazevic, B. Cihodariu-Ionita, and J. Jacoby, “Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping,” Phys. Plasmas 22, 053502 (2015).10.1063/1.4919851
|
[42] |
C. Teske, Y. Liu, S. Blaes, and J. Jacoby, “Electron density and plasma dynamics of a spherical theta pinch,” Phys. Plasmas 19, 033505 (2012).10.1063/1.3690107
|
[43] |
W. W. Yarborough and J. P. Barach, “Current sheet observations in a small theta pinch,” Phys. Fluids 18, 105 (1975).10.1063/1.860981
|
[44] |
K. Cistakov, P. Christ, L. Manganelli , “Study on a dense theta pinch plasma for ion beam stripping application for FAIR,” Recent Contrib. Phys 75, 14–21 (2020).10.26577/rcph.2020.v75.i4.02.
|
[45] |
M. Sato, “Particle acceleration and breakdown conditions in an alternating magnetic field,” Nuovo Cimento 23, 22–46 (1962).10.1007/bf02733540
|
[46] |
H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).
|
[47] |
H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Berlin, Heidelberg, 2009).
|
[48] |
J. M. Garland, G. Tauscher, S. Bohlen et al., “Combining laser interferometry and plasma spectroscopy for spatially resolved high-sensitivity plasma density measurements in discharge capillaries,” Rev. Sci. Instrum. 92, 013505 (2021).10.1063/5.0021117
|
[49] |
M. A. Gigosos, M. Á. González, and V. Cardeñoso, “Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics,” Spectrochim. Acta, Part B 58, 1489–1504 (2003).10.1016/s0584-8547(03)00097-1
|
[50] |
N. Konjević, M. Ivković, and N. Sakan, “Hydrogen Balmer lines for low electron number density plasma diagnostics,” Spectrochim. Acta, Part B 76, 16–26 (2012).10.1016/j.sab.2012.06.026
|
[51] |
C. G. Parigger, K. A. Drake, C. M. Helstern, and G. Gautam, “Laboratory hydrogen-beta emission spectroscopy for analysis of astrophysical white dwarf spectra,” Atoms 6, 36 (2018).10.3390/atoms6030036
|
[52] |
P. Christ, K. Cistakov, M. Iberler et al., “Measurement of the free electron line density in a spherical theta-pinch plasma target by single wavelength interferometry,” J. Phys. D: Appl. Phys. 54, 285203 (2021).10.1088/1361-6463/abf956
|
[53] |
H. R. Griem, Plasma Spectroscopy (McGraw-Hill, NY, USA, 1964).
|
[54] |
C. G. Parigger, C. M. Helstern, K. A. Drake, and G. Gautam, “Balmer-series hydrogen-beta line dip-shifts for electron density measurements,” Int. Rev. At. Mol. Phys 8(2), 73–79 (2017).
|
[55] |
G. H. Cavalcanti and E. E. Farias, “Analysis of the energetic parameters of a theta pinch,” Rev. Sci. Instrum. 80, 125109 (2009).10.1063/1.3272785
|
[56] |
C. Teske, J. Jacoby, F. Senzel, and W. Schweizer, “Energy transfer efficiency of a spherical theta pinch,” Phys. Plasmas 17, 043501 (2010).10.1063/1.3368795
|
[57] |
F. A. Ebrahim, W. H. Gaber, and M. E. Abdel-kader, “Estimation of the current sheath dynamics and magnetic field for theta pinch by snow plow model simulation,” J. Fusion Energy 38, 539–547 (2019).10.1007/s10894-019-00222-8
|
[58] |
L. H. Lim, Y. S. Ling, S. H. Saw et al., “Amending the reflected shock phase of the Lee code,” AIP Conf. Proc 1824, 030010 (2017).10.1063/1.4978828
|
[59] |
T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, New York, 2004).
|
[60] |
Y. Mizuguchi, J.-I. Sakai, H. R. Yousefi, T. Haruki, and K. Masugata, “Simulation of high-energy proton production by fast magnetosonic shock waves in pinched plasma discharges,” Phys. Plasmas 14, 032704 (2007).10.1063/1.2716673
|
[61] |
S. H. Gold and A. W. DeSilva, “Observation of an lon-beam-driven instability in a magnetized plasma,” Phys. Rev. Lett. 42, 1750–1753 (1979).10.1103/physrevlett.42.1750
|
[62] |
K. Papadopoulos, “A review of anomalous resistivity for the ionosphere,” Rev. Geophys. 15, 113–127, (1977).10.1029/rg015i001p00113
|
[63] |
D. B. Graham, Y. V. Khotyaintsev, M. Andre et al., “Direct observations of anomalous resistivity and diffusion in collisionless plasma,” Nat. Commun. 13, 2954 (2022).10.1038/s41467-022-30561-8
|
[64] |
R. C. Davidson and N. T. Gladd, “Anomalous transport properties associated with the lower-hybrid-drift instability,” Phys. Fluids 18, 1327 (1975).10.1063/1.861021
|
[65] |
K. Tummel, C. L. Ellison, W. A. Farmer et al., “Kinetic simulations of anomalous resistivity in high-temperature current carrying plasmas,” Phys. Plasmas 27, 092306 (2020).10.1063/5.0004508
|