Citation: | Lu Zhi-Wei, Hou Xin-Di, Wan Feng, Salamin Yousef I., Lv Chong, Zhang Bo, Wang Fei, Xu Zhong-Feng, Li Jian-Xing. Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin[J]. Matter and Radiation at Extremes, 2023, 8(3): 034401. doi: 10.1063/5.0140828 |
[1] |
S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys 85, 1–48 (2013).10.1103/revmodphys.85.1
|
[2] |
I. C. E. Turcu, F. Negoita, D. A. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M. O. Cernaianu, M. V. Tataru, P. Ghenuche et al., “High field physics and QED experiments at ELI-NP,” Rom. Rep. Phys 68, S145–S231 (2016).
|
[3] |
E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
|
[4] |
A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys 85, 751–793 (2013).10.1103/revmodphys.85.751
|
[5] |
B. Miao, J. E. Shrock, L. Feder, R. C. Hollinger, J. Morrison, R. Nedbailo, A. Picksley, H. Song, S. Wang, J. J. Rocca, and H. M. Milchberg, “Multi-GeV electron bunches from an all-optical laser wakefield accelerator,” Phys. Rev. X 12, 031038 (2022).10.1103/physrevx.12.031038
|
[6] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
|
[7] |
J. Feng, W. Wang, C. Fu, L. Chen, J. Tan, Y. Li, J. Wang, Y. Li, G. Zhang, Y. Ma, and J. Zhang, “Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/PhysRevLett.128.052501
|
[8] |
B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys 78, 755–807 (2006).10.1103/revmodphys.78.755
|
[9] |
S. V. Lebedev, A. Frank, and D. D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002
|
[10] |
A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
|
[11] |
Z.-W. Lu, Q. Zhao, F. Wan, B.-C. Liu, Y.-S. Huang, Z.-F. Xu, and J.-X. Li, “Generation of arbitrarily polarized muon pairs via polarized e-e+ collision,” Phys. Rev. D 105, 113002 (2022).10.1103/physrevd.105.113002
|
[12] |
J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
[13] |
K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. Baird, K. Behm, S. Bohlen, J. Cole, D. Corvan et al., “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004
|
[14] |
J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar et al., “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020
|
[15] |
M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
|
[16] |
J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
|
[17] |
T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson et al., “Focusing of short-pulse high-intensity laser-accelerated proton beams,” Nat. Phys. 8, 139–142 (2012).10.1038/nphys2153
|
[18] |
R. A. Simpson, G. G. Scott, D. Mariscal, D. Rusby, P. M. King, E. Grace, A. Aghedo, I. Pagano, M. Sinclair, C. Armstrong et al., “Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime,” Phys. Plasmas 28, 013108 (2021).10.1063/5.0023612
|
[19] |
R. Trebino, R. Jafari, S. A. Akturk, P. Bowlan, Z. Guang, P. Zhu, E. Escoto, and G. Steinmeyer, “Highly reliable measurement of ultrashort laser pulses,” J. Appl. Phys. 128, 171103 (2020).10.1063/5.0022552
|
[20] |
O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
|
[21] |
M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
|
[22] |
C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Accel. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
|
[23] |
G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).10.1007/s003400050001
|
[24] |
G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).10.1038/nphoton.2016.140
|
[25] |
Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).10.7567/apex.10.102702
|
[26] |
M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn, and S. Weber, “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
|
[27] |
M. F. Ciappina and S. V. Popruzhenko, “Diagnostics of ultra-intense laser pulses using tunneling ionization,” Laser Phys. Lett. 17, 025301 (2020).10.1088/1612-202x/ab6559
|
[28] |
K. A. Ivanov, I. N. Tsymbalov, O. E. Vais, S. G. Bochkarev, R. V. Volkov, V. Y. Bychenkov, and A. B. Savel’ev, “Accelerated electrons for in situ peak intensity monitoring of tightly focused femtosecond laser radiation at high intensities,” Plasma Phys. Controlled Fusion 60, 105011 (2018).10.1088/1361-6587/aada60
|
[29] |
O. E. Vais and V. Yu. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
|
[30] |
K. Krajewska, F. Cajiao Vélez, and J. Z. Kamiński, “High-energy ionization for intense laser pulse diagnostics,” Plasma Phys. Controlled Fusion 61, 074004 (2019).10.1088/1361-6587/ab1d3e
|
[31] |
O. E. Vais and V. Yu. Bychenkov, “Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons,” Plasma Phys. Controlled Fusion 63, 014002 (2020).10.1088/1361-6587/abc92a
|
[32] |
J.-X. Li, Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Single-shot carrier-envelope phase determination of long superintense laser pulses,” Phys. Rev. Lett. 120, 124803 (2018).10.1103/physrevlett.120.124803
|
[33] |
F. Mackenroth, A. R. Holkundkar, and H.-P. Schlenvoigt, “Ultra-intense laser pulse characterization using ponderomotive electron scattering,” New J. Phys. 21, 123028 (2019).10.1088/1367-2630/ab5c4d
|
[34] |
O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt. Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
|
[35] |
C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado, G. Zeraouli, G. Gatti, L. Roso, R. Fedosejevs, and W. T. Hill, “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt. Express 27, 30020–30030 (2019).10.1364/oe.27.030020
|
[36] |
F. Mackenroth and A. R. Holkundkar, “Determining the duration of an ultra-intense laser pulse directly in its focus,” Sci. Rep. 9, 19607–19612 (2019).10.1038/s41598-019-55949-3
|
[37] |
I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
|
[38] |
Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
|
[39] |
H.-H. Song, W.-M. Wang, J.-X. Li, Y.-F. Li, and Y.-T. Li, “Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse,” Phys. Rev. A 100, 033407 (2019).10.1103/physreva.100.033407
|
[40] |
Y. F. Li, R. Shaisultanov, Y. Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J. X. Li, “Polarized ultrashort brilliant multi-Gev γ rays via single-shot laser-electron interaction,” Phys. Rev. Lett. 124, 014801 (2020).10.1103/PhysRevLett.124.014801
|
[41] |
G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and D. Shih, “Machine learning in the search for new fundamental physics,” Nat. Rev. Phys. 4, 399–412 (2022).10.1038/s42254-022-00455-1
|
[42] | |
[43] |
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the physical sciences,” Rev. Mod. Phys. 91, 045002 (2019).10.1103/revmodphys.91.045002
|
[44] |
G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, “From DFT to machine learning: Recent approaches to materials science–a review,” J. Phys. Mater. 2, 032001 (2019).10.1088/2515-7639/ab084b
|
[45] |
J. Carrasquilla, “Machine learning for quantum matter,” Adv. Phys.: X 5, 1797528 (2020).10.1080/23746149.2020.1797528
|
[46] | |
[47] |
M. E. Martin, R. A. London, S. Goluoglu, and H. D. Whitley, “An automated design process for short pulse laser driven opacity experiments,” High Energy Density Phys. 26, 26–37 (2018).10.1016/j.hedp.2017.12.001
|
[48] |
P. W. Hatfield, S. J. Rose, and R. H. H. Scott, “The blind implosion-maker: Automated inertial confinement fusion experiment design,” Phys. Plasmas 26, 062706 (2019).10.1063/1.5091985
|
[49] |
P. W. Hatfield, J. A. Gaffney, G. J. Anderson, S. Ali, L. Antonelli, S. Başeğmez du Pree, J. Citrin, M. Fajardo, P. Knapp, B. Kettle et al., “The data-driven future of high-energy-density physics,” Nature 593, 351–361 (2021).10.1038/s41586-021-03382-w
|
[50] |
J. Biener, D. D. Ho, C. Wild, E. Woerner, M. M. Biener, B. S. El-Dasher, D. G. Hicks, J. H. Eggert, P. M. Celliers, G. W. Collins et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001
|
[51] |
M. J. MacDonald, T. Gorkhover, B. Bachmann, M. Bucher, S. Carron, R. N. Coffee, R. P. Drake, K. R. Ferguson, L. B. Fletcher, E. J. Gamboa et al., “Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS,” Rev. Sci. Instrum. 87, 11E709 (2016).10.1063/1.4960502
|
[52] |
M. Wen, M. Tamburini, and C. H. Keitel, “Polarized laser-wakefield-accelerated kiloampere electron beams,” Phys. Rev. Lett. 122, 214801 (2019).10.1103/physrevlett.122.214801
|
[53] |
Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung et al., “In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator,” Phys. Rev. Lett. 126, 054801 (2021).10.1103/PhysRevLett.126.054801
|
[54] |
D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402 (2019).10.1103/physreva.100.061402
|
[55] |
K. Xue, R.-T. Guo, F. Wan, R. Shaisultanov, Y.-Y. Chen, Z.-F. Xu, X.-G. Ren, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process,” Fundam. Res. 2, 539–545 (2022).10.1016/j.fmre.2021.11.022
|
[56] |
N. F. Mott, “The scattering of fast electrons by atomic nuclei,” Proc. R. Soc. London A 124, 425–442 (1929).10.1038/124986a0
|
[57] |
P. S. Cooper, M. J. Alguard, R. D. Ehrlich, V. W. Hughes, H. Kobayakawa, J. S. Ladish, M. S. Lubell, N. Sasao, K. P. Schüler, P. A. Souder, G. Baum, W. Raith, K. Kondo, D. H. Coward, R. H. Miller, C. Y. Prescott, D. J. Sherden, and C. K. Sinclair, “Polarized electron-electron scattering at GeV energies,” Phys. Rev. Lett. 34, 1589–1592 (1975).10.1103/physrevlett.34.1589
|
[58] |
O. Klein and Y. Nishina, “Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac,” Z. Phys. 52, 853–868 (1929).10.1007/bf01366453
|
[59] |
Y.-F. Li, R.-T. Guo, R. Shaisultanov, K. Z. Hatsagortsyan, and J.-X. Li, “Electron polarimetry with nonlinear Compton scattering,” Phys. Rev. Appl. 12, 014047 (2019).10.1103/physrevapplied.12.014047
|
[60] |
K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu, and J.-X. Li, “Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).10.1063/5.0007734
|
[61] |
V. Katkov, V. M. Strakhovenko et al., Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, 1998).
|
[62] |
V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/bf01120220
|
[63] |
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga , “PyTorch: An imperative style, high-performance deep learning library,” in Proceedings of the 33rd International Conference on Neural Information Processing Systems (Curran Associates Inc., 2019), article no. 721.
|
[64] | |
[65] |
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).10.5555/2627435.2670313
|
[66] |
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Course of theoretical physics (Pergamon Press Ltd., 1975). Vol. 2.
|
[67] |
R.-T. Guo, Y. Wang, R. Shaisultanov, F. Wan, Z.-F. Xu, Y.-Y. Chen, K. Z. Hatsagortsyan, and J.-X. Li, “Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse,” Phys. Rev. Res. 2, 033483 (2020).10.1103/physrevresearch.2.033483
|
[68] |
F. Niel, C. Riconda, F. Amiranoff, R. Duclous, and M. Grech, “From quantum to classical modeling of radiation reaction: A focus on stochasticity effects,” Phys. Rev. E 97, 043209 (2018).10.1103/PhysRevE.97.043209
|
[69] |
M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, “Radiation reaction effects on radiation pressure acceleration,” New J. Phys. 12, 123005 (2010).10.1088/1367-2630/12/12/123005
|
[70] |
K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal et al., “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5, 024402 (2020).10.1063/1.5093535
|
[71] |
M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti: Sapphire laser,” Opt. Lett. 28, 1594–1596 (2003).10.1364/ol.28.001594
|
[72] |
T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: Sapphire laser,” Opt. Express 20, 10807–10815 (2012).10.1364/oe.20.010807
|
[73] |
W. Hong, S. He, J. Teng, Z. Deng, Z. Zhang, F. Lu, B. Zhang, B. Zhu, Z. Dai, B. Cui et al., “Commissioning experiment of the high-contrast SILEX-II multi-petawatt laser facility,” Matter Radiat. Extremes 6, 064401 (2021).10.1063/5.0016019
|
[74] |
K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, P. Antici, Y. Ayoul, A. Beluze, D. Cavanna, T. Ceccotti, M. Chabanis et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6, 064402 (2021).10.1063/5.0065138
|