Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Lu Zhi-Wei, Hou Xin-Di, Wan Feng, Salamin Yousef I., Lv Chong, Zhang Bo, Wang Fei, Xu Zhong-Feng, Li Jian-Xing. Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin[J]. Matter and Radiation at Extremes, 2023, 8(3): 034401. doi: 10.1063/5.0140828
Citation: Lu Zhi-Wei, Hou Xin-Di, Wan Feng, Salamin Yousef I., Lv Chong, Zhang Bo, Wang Fei, Xu Zhong-Feng, Li Jian-Xing. Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin[J]. Matter and Radiation at Extremes, 2023, 8(3): 034401. doi: 10.1063/5.0140828

Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin

doi: 10.1063/5.0140828
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wanfeng@xjtu.edu.cn
  • Received Date: 2022-12-31
  • Accepted Date: 2023-02-26
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under extreme conditions. However, accurate determination of the spatial and temporal characteristics of a laser pulse is still a great challenge, especially when laser powers higher than hundreds of terawatts are involved. In this paper, by utilizing the radiative spin-flip effect, we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense lasers with peak intensities around 1020–1022 W/cm2. With three shots, our machine-learning-assisted model can predict, simultaneously, the pulse duration, peak intensity, and focal radius of a focused Gaussian ultrafast ultraintense laser (in principle, the profile can be arbitrary) with relative errors of 0.1%–10%. The underlying physics and an alternative diagnosis method (without the assistance of machine learning) are revealed by the asymptotic approximation of the final spin degree of polarization. Our proposed scheme exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters. Accurate measurements of ultrafast ultraintense laser parameters will lead to much higher precision in, for example, laser nuclear physics investigations and laboratory astrophysics studies. Robust machine learning techniques may also find applications in more general strong-field physics scenarios.
  • loading
  • [1]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys 85, 1–48 (2013).10.1103/revmodphys.85.1
    [2]
    I. C. E. Turcu, F. Negoita, D. A. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M. O. Cernaianu, M. V. Tataru, P. Ghenuche et al., “High field physics and QED experiments at ELI-NP,” Rom. Rep. Phys 68, S145–S231 (2016).
    [3]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
    [4]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys 85, 751–793 (2013).10.1103/revmodphys.85.751
    [5]
    B. Miao, J. E. Shrock, L. Feder, R. C. Hollinger, J. Morrison, R. Nedbailo, A. Picksley, H. Song, S. Wang, J. J. Rocca, and H. M. Milchberg, “Multi-GeV electron bunches from an all-optical laser wakefield accelerator,” Phys. Rev. X 12, 031038 (2022).10.1103/physrevx.12.031038
    [6]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [7]
    J. Feng, W. Wang, C. Fu, L. Chen, J. Tan, Y. Li, J. Wang, Y. Li, G. Zhang, Y. Ma, and J. Zhang, “Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/PhysRevLett.128.052501
    [8]
    B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys 78, 755–807 (2006).10.1103/revmodphys.78.755
    [9]
    S. V. Lebedev, A. Frank, and D. D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002
    [10]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
    [11]
    Z.-W. Lu, Q. Zhao, F. Wan, B.-C. Liu, Y.-S. Huang, Z.-F. Xu, and J.-X. Li, “Generation of arbitrarily polarized muon pairs via polarized e-e+ collision,” Phys. Rev. D 105, 113002 (2022).10.1103/physrevd.105.113002
    [12]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [13]
    K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. Baird, K. Behm, S. Bohlen, J. Cole, D. Corvan et al., “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004
    [14]
    J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar et al., “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020
    [15]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
    [16]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
    [17]
    T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson et al., “Focusing of short-pulse high-intensity laser-accelerated proton beams,” Nat. Phys. 8, 139–142 (2012).10.1038/nphys2153
    [18]
    R. A. Simpson, G. G. Scott, D. Mariscal, D. Rusby, P. M. King, E. Grace, A. Aghedo, I. Pagano, M. Sinclair, C. Armstrong et al., “Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime,” Phys. Plasmas 28, 013108 (2021).10.1063/5.0023612
    [19]
    R. Trebino, R. Jafari, S. A. Akturk, P. Bowlan, Z. Guang, P. Zhu, E. Escoto, and G. Steinmeyer, “Highly reliable measurement of ultrashort laser pulses,” J. Appl. Phys. 128, 171103 (2020).10.1063/5.0022552
    [20]
    O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
    [21]
    M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
    [22]
    C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Accel. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
    [23]
    G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).10.1007/s003400050001
    [24]
    G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).10.1038/nphoton.2016.140
    [25]
    Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).10.7567/apex.10.102702
    [26]
    M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn, and S. Weber, “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
    [27]
    M. F. Ciappina and S. V. Popruzhenko, “Diagnostics of ultra-intense laser pulses using tunneling ionization,” Laser Phys. Lett. 17, 025301 (2020).10.1088/1612-202x/ab6559
    [28]
    K. A. Ivanov, I. N. Tsymbalov, O. E. Vais, S. G. Bochkarev, R. V. Volkov, V. Y. Bychenkov, and A. B. Savel’ev, “Accelerated electrons for in situ peak intensity monitoring of tightly focused femtosecond laser radiation at high intensities,” Plasma Phys. Controlled Fusion 60, 105011 (2018).10.1088/1361-6587/aada60
    [29]
    O. E. Vais and V. Yu. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
    [30]
    K. Krajewska, F. Cajiao Vélez, and J. Z. Kamiński, “High-energy ionization for intense laser pulse diagnostics,” Plasma Phys. Controlled Fusion 61, 074004 (2019).10.1088/1361-6587/ab1d3e
    [31]
    O. E. Vais and V. Yu. Bychenkov, “Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons,” Plasma Phys. Controlled Fusion 63, 014002 (2020).10.1088/1361-6587/abc92a
    [32]
    J.-X. Li, Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Single-shot carrier-envelope phase determination of long superintense laser pulses,” Phys. Rev. Lett. 120, 124803 (2018).10.1103/physrevlett.120.124803
    [33]
    F. Mackenroth, A. R. Holkundkar, and H.-P. Schlenvoigt, “Ultra-intense laser pulse characterization using ponderomotive electron scattering,” New J. Phys. 21, 123028 (2019).10.1088/1367-2630/ab5c4d
    [34]
    O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt. Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
    [35]
    C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado, G. Zeraouli, G. Gatti, L. Roso, R. Fedosejevs, and W. T. Hill, “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt. Express 27, 30020–30030 (2019).10.1364/oe.27.030020
    [36]
    F. Mackenroth and A. R. Holkundkar, “Determining the duration of an ultra-intense laser pulse directly in its focus,” Sci. Rep. 9, 19607–19612 (2019).10.1038/s41598-019-55949-3
    [37]
    I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
    [38]
    Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
    [39]
    H.-H. Song, W.-M. Wang, J.-X. Li, Y.-F. Li, and Y.-T. Li, “Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse,” Phys. Rev. A 100, 033407 (2019).10.1103/physreva.100.033407
    [40]
    Y. F. Li, R. Shaisultanov, Y. Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J. X. Li, “Polarized ultrashort brilliant multi-Gev γ rays via single-shot laser-electron interaction,” Phys. Rev. Lett. 124, 014801 (2020).10.1103/PhysRevLett.124.014801
    [41]
    G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and D. Shih, “Machine learning in the search for new fundamental physics,” Nat. Rev. Phys. 4, 399–412 (2022).10.1038/s42254-022-00455-1
    [42]
    [43]
    G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the physical sciences,” Rev. Mod. Phys. 91, 045002 (2019).10.1103/revmodphys.91.045002
    [44]
    G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, “From DFT to machine learning: Recent approaches to materials science–a review,” J. Phys. Mater. 2, 032001 (2019).10.1088/2515-7639/ab084b
    [45]
    J. Carrasquilla, “Machine learning for quantum matter,” Adv. Phys.: X 5, 1797528 (2020).10.1080/23746149.2020.1797528
    [46]
    [47]
    M. E. Martin, R. A. London, S. Goluoglu, and H. D. Whitley, “An automated design process for short pulse laser driven opacity experiments,” High Energy Density Phys. 26, 26–37 (2018).10.1016/j.hedp.2017.12.001
    [48]
    P. W. Hatfield, S. J. Rose, and R. H. H. Scott, “The blind implosion-maker: Automated inertial confinement fusion experiment design,” Phys. Plasmas 26, 062706 (2019).10.1063/1.5091985
    [49]
    P. W. Hatfield, J. A. Gaffney, G. J. Anderson, S. Ali, L. Antonelli, S. Başeğmez du Pree, J. Citrin, M. Fajardo, P. Knapp, B. Kettle et al., “The data-driven future of high-energy-density physics,” Nature 593, 351–361 (2021).10.1038/s41586-021-03382-w
    [50]
    J. Biener, D. D. Ho, C. Wild, E. Woerner, M. M. Biener, B. S. El-Dasher, D. G. Hicks, J. H. Eggert, P. M. Celliers, G. W. Collins et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001
    [51]
    M. J. MacDonald, T. Gorkhover, B. Bachmann, M. Bucher, S. Carron, R. N. Coffee, R. P. Drake, K. R. Ferguson, L. B. Fletcher, E. J. Gamboa et al., “Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS,” Rev. Sci. Instrum. 87, 11E709 (2016).10.1063/1.4960502
    [52]
    M. Wen, M. Tamburini, and C. H. Keitel, “Polarized laser-wakefield-accelerated kiloampere electron beams,” Phys. Rev. Lett. 122, 214801 (2019).10.1103/physrevlett.122.214801
    [53]
    Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung et al., “In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator,” Phys. Rev. Lett. 126, 054801 (2021).10.1103/PhysRevLett.126.054801
    [54]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402 (2019).10.1103/physreva.100.061402
    [55]
    K. Xue, R.-T. Guo, F. Wan, R. Shaisultanov, Y.-Y. Chen, Z.-F. Xu, X.-G. Ren, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process,” Fundam. Res. 2, 539–545 (2022).10.1016/j.fmre.2021.11.022
    [56]
    N. F. Mott, “The scattering of fast electrons by atomic nuclei,” Proc. R. Soc. London A 124, 425–442 (1929).10.1038/124986a0
    [57]
    P. S. Cooper, M. J. Alguard, R. D. Ehrlich, V. W. Hughes, H. Kobayakawa, J. S. Ladish, M. S. Lubell, N. Sasao, K. P. Schüler, P. A. Souder, G. Baum, W. Raith, K. Kondo, D. H. Coward, R. H. Miller, C. Y. Prescott, D. J. Sherden, and C. K. Sinclair, “Polarized electron-electron scattering at GeV energies,” Phys. Rev. Lett. 34, 1589–1592 (1975).10.1103/physrevlett.34.1589
    [58]
    O. Klein and Y. Nishina, “Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac,” Z. Phys. 52, 853–868 (1929).10.1007/bf01366453
    [59]
    Y.-F. Li, R.-T. Guo, R. Shaisultanov, K. Z. Hatsagortsyan, and J.-X. Li, “Electron polarimetry with nonlinear Compton scattering,” Phys. Rev. Appl. 12, 014047 (2019).10.1103/physrevapplied.12.014047
    [60]
    K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu, and J.-X. Li, “Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).10.1063/5.0007734
    [61]
    V. Katkov, V. M. Strakhovenko et al., Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, 1998).
    [62]
    V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/bf01120220
    [63]
    A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga , “PyTorch: An imperative style, high-performance deep learning library,” in Proceedings of the 33rd International Conference on Neural Information Processing Systems (Curran Associates Inc., 2019), article no. 721.
    [64]
    [65]
    N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).10.5555/2627435.2670313
    [66]
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Course of theoretical physics (Pergamon Press Ltd., 1975). Vol. 2.
    [67]
    R.-T. Guo, Y. Wang, R. Shaisultanov, F. Wan, Z.-F. Xu, Y.-Y. Chen, K. Z. Hatsagortsyan, and J.-X. Li, “Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse,” Phys. Rev. Res. 2, 033483 (2020).10.1103/physrevresearch.2.033483
    [68]
    F. Niel, C. Riconda, F. Amiranoff, R. Duclous, and M. Grech, “From quantum to classical modeling of radiation reaction: A focus on stochasticity effects,” Phys. Rev. E 97, 043209 (2018).10.1103/PhysRevE.97.043209
    [69]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, “Radiation reaction effects on radiation pressure acceleration,” New J. Phys. 12, 123005 (2010).10.1088/1367-2630/12/12/123005
    [70]
    K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal et al., “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5, 024402 (2020).10.1063/1.5093535
    [71]
    M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti: Sapphire laser,” Opt. Lett. 28, 1594–1596 (2003).10.1364/ol.28.001594
    [72]
    T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: Sapphire laser,” Opt. Express 20, 10807–10815 (2012).10.1364/oe.20.010807
    [73]
    W. Hong, S. He, J. Teng, Z. Deng, Z. Zhang, F. Lu, B. Zhang, B. Zhu, Z. Dai, B. Cui et al., “Commissioning experiment of the high-contrast SILEX-II multi-petawatt laser facility,” Matter Radiat. Extremes 6, 064401 (2021).10.1063/5.0016019
    [74]
    K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, P. Antici, Y. Ayoul, A. Beluze, D. Cavanna, T. Ceccotti, M. Chabanis et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6, 064402 (2021).10.1063/5.0065138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (106) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return