Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Riconda C., Weber S.. Plasma optics: A perspective for high-power coherent light generation and manipulation[J]. Matter and Radiation at Extremes, 2023, 8(2): 023001. doi: 10.1063/5.0138996
Citation: Riconda C., Weber S.. Plasma optics: A perspective for high-power coherent light generation and manipulation[J]. Matter and Radiation at Extremes, 2023, 8(2): 023001. doi: 10.1063/5.0138996

Plasma optics: A perspective for high-power coherent light generation and manipulation

doi: 10.1063/5.0138996
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: stefan.weber@eli-beams.eu
  • Received Date: 2022-12-16
  • Accepted Date: 2022-12-21
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • Over the last two decades, the importance of fully ionized plasmas for the controlled manipulation of high-power coherent light has increased considerably. Many ideas have been put forward on how to control or change the properties of laser pulses such as their frequency, spectrum, intensity, and polarization. The corresponding interaction with a plasma can take place either in a self-organizing way or by prior tailoring. Considerable work has been done in theoretical studies and in simulations, but at present there is a backlog of demand for experimental verification and the associated detailed characterization of plasma-optical elements. Existing proof-of-principle experiments need to be pushed to higher power levels. There is little doubt that plasmas have huge potential for future use in high-power optics. This introduction to the special issue of Matter and Radiation at Extremes devoted to plasma optics sets the framework, gives a short historical overview, and briefly describes the various articles in this collection.
  • Data sharing is not applicable to this article as no new data were created or analyzed in this study.
  • loading
  • [1]
    G. Mourou, “Nobel lecture: Extreme light physics and application,” Rev. Mod. Phys. 91, 030501 (2019).10.1103/revmodphys.91.030501
    [2]
    D. Strickland, “Nobel lecture: Generating high-intensity ultrashort optical pulses,” Rev. Mod. Phys. 91, 030502 (2019).10.1103/revmodphys.91.030502
    [3]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8
    [4]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [5]
    A. A. Andreev, C. Riconda, V. T. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).10.1063/1.2201896
    [6]
    V. Malkin, G. Shvets, and N. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448 (1998).10.1103/PhysRevLett.82.4448
    [7]
    W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, “Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses,” Phys. Rev. Lett. 94, 045003 (2005).10.1103/PhysRevLett.94.045003
    [8]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, and L. J. Suter, “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/PhysRevLett.102.025004
    [9]
    M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, and R. Kodama, “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314 (2010).10.1364/OL.35.002314
    [10]
    R. Wilson, M. King, R. J. Gray, D. C. Carroll, R. J. Dance, C. Armstrong, S. J. Hawkes, R. J. Clarke, D. J. Robertson, D. Neely, and P. McKenna, “Ellipsoidal plasma mirror focusing of high power laser pulses to ultrahigh intensities,” Phys. Plasmas 23, 033106 (2016).10.1063/1.4943200
    [11]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
    [12]
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, and F. Quéré, “Optical properties of relativistic plasma mirrors,” Nat. Commun. 5, 3403 (2014).10.1038/ncomms4403
    [13]
    G. Lehmann and K. H. Spatschek, “Transient plasma photonic crystals for high-power lasers,” Phys. Rev. Lett. 116, 225002 (2016).10.1103/physrevlett.116.225002
    [14]
    D. Turnbull, P. Michel, T. Chapman, E. Tubman, B. B. Pollock, C. Y. Chen, C. Goyon, J. S. Ross, L. Divol, N. Woolsey, and J. D. Moody, “High power dynamic polarization control using plasma photonics,” Phys. Rev. Lett. 116, 205001 (2016).10.1103/physrevlett.116.205001
    [15]
    G. Vieux, S. Cipiccia, D. W. Grant, N. Lemos, P. Grant, C. Ciocarlan, B. Ersfeld, M. S. Hur, P. Lepipas, G. G. Manahan, G. Raj, D. Reboredo Gil, A. Subiel, G. H. Welsh, S. M. Wiggins, S. R. Yoffe, J. P. Farmer, C. Aniculaesei, E. Brunetti, X. Yang, R. Heathcote, G. Nersisyan, C. L. S. Lewis, A. Pukhov, J. M. Dias, and D. A. Jaroszynski, “An ultra-high gain and efficient amplifier based on Raman amplification in plasma,” Sci. Rep. 7, 2399 (2017).10.1038/s41598-017-01783-4
    [16]
    A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quéré, “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440 (2017).10.1038/nphys4007
    [17]
    R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, W. H. Dunlop, J. D. Moody, D. J. Strozzi, P. A. Michel, L. Divol, O. L. Landen, B. J. MacGowan, B. M. Van Wonterghem, K. B. Fournier, and B. E. Blue, “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2018).10.1038/nphys4271
    [18]
    K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).10.1103/PhysRevE.98.023202
    [19]
    J.-R. Marquès, L. Lancia, T. Gangolf, M. Blecher, S. Bolanos, J. Fuchs, O. Willi, F. Amiranoff, R. Berger, M. Chiaramello, S. Weber, and C. Riconda, “Joule-level energy transfer to sub-ps laser pulses by a plasma-based amplifier,” Phys. Rev. X 13, 021008 (2019).10.1103/PhysRevX.9.021008
    [20]
    H. Peng, C. Riconda, M. Grech, J. Q. Su, and S. Weber, “Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description,” Phys. Rev. E. 100, 061201 (2019).10.1103/PhysRevE.100.061201
    [21]
    R. M. G. M. Trines, E. P. Alves, E. Webb, J. Vieira, F. Fiúza, R. A. Fonseca, L. O. Silva, R. A. Cairns, and R. Bingham, “New criteria for efficient Raman and Brillouin amplification of laser beams in plasma,” Sci. Rep. 10, 19875 (2020).10.1038/s41598-020-76801-z
    [22]
    H. Peng, C. Riconda, S. Weber, C. Zhou, and S. Ruan, “Frequency conversion of lasers in a dynamic plasma grating,” Phys. Rev. Appl. 15, 054053 (2021).10.1103/physrevapplied.15.054053
    [23]
    M. Edwards and P. Michel, “Plasma transmission gratings for compression of high-intensity laser pulses,” Phys. Rev. Appl. 18, 024026 (2022).10.1103/physrevapplied.18.024026
    [24]
    M. R. Edwards, V. R. Munirov, A. Singh, N. M. Fasano, E. Kur, N. Lemos, J. M. Mikhailova, J. S. Wurtele, and P. Michel, “Holographic plasma lenses,” Phys. Rev. Lett. 128, 065003 (2022).10.1103/PhysRevLett.128.065003
    [25]
    T. Wiste, O. Maliuk, V. Tikhonchuk, T. Lastovicka, J. Homola, K. Chadt, and S. Weber, “Additive manufactured foam targets for experiments on high-power laser-matter interaction,” J. Appl. Phys. 133, 043101 (2023).10.1063/5.0121650
    [26]
    K. Qu and N. J. Fisch, “Generating optical supercontinuum and frequency comb in tenuous plasmas,” Matter Radiat. Extremes 6, 054402 (2021).10.1063/5.0052829
    [27]
    C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28, 451 (2020).10.1364/oe.28.000451
    [28]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [29]
    X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas,” Matter Radiat. Extremes 7, 014403 (2022).10.1063/5.0068265
    [30]
    B. Wolter, M. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5, 021034 (2015).10.1103/physrevx.5.021034
    [31]
    E. F. J. Bacon, M. King, R. Wilson, T. P. Frazer, R. J. Gray, and P. McKenna, “High order modes of intense second harmonic light produced from a plasma aperture,” Matter Radiat. Extremes 7, 054401 (2022).10.1063/5.0097585
    [32]
    M. J. Duff, R. Wilson, M. King, B. Gonzalez-Izquierdo, A. Higginson, S. D. R. Williamson, Z. E. Davidson, R. Capdessus, N. Booth, S. Hawkes, D. Neely, R. J. Gray, and P. McKenna, “High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture,” Sci. Rep. 10, 105 (2020).10.1038/s41598-019-57119-x
    [33]
    G. Lehmann and K. H. Spatschek, “Reflection and transmission properties of a finite-length electron plasma grating,” Matter Radiat. Extremes 7, 054402 (2022).10.1063/5.0096386
    [34]
    Z. Wu, Y. Zuo, X. Zeng, Z. Li, Z. Zhang, X. Wang, B. Hu, X. Wang, J. Mu, J. Su, Q. Zhu, and Y. Dai, “Laser compression via fast-extending plasma gratings,” Matter Radiat. Extremes 7, 064402 (2022).10.1063/5.0109574
    [35]
    N. Mikheytsev and A. Korzhimanov, “Generation of synchronized high-intensity x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas,” Matter Radiat. Extremes 8, 024001 (2023).10.1063/5.0116660
    [36]
    F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58, 103001 (2016).10.1088/0741-3335/58/10/103001
    [37]
    Z. Li, Y. Zuo, X. Zeng, Z. Wu, X. Wang, X. Wang, J. Mu, and B. Hu, “Ultra-intense few-cycle infrared laser generation by fast-extending plasma grating,” Matter Radiat. Extremes 8, 014401 (2023).10.1063/5.0119868
    [38]
    D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865 (2010).10.1364/oe.18.017865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (74) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return