Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Chen Feng, Xu Haibo, Shi Junhui, Li Xinge, Zheng Na. A multi-material diagnosis method based on high-energy proton radiography[J]. Matter and Radiation at Extremes, 2023, 8(4): 046902. doi: 10.1063/5.0138725
Citation: Chen Feng, Xu Haibo, Shi Junhui, Li Xinge, Zheng Na. A multi-material diagnosis method based on high-energy proton radiography[J]. Matter and Radiation at Extremes, 2023, 8(4): 046902. doi: 10.1063/5.0138725

A multi-material diagnosis method based on high-energy proton radiography

doi: 10.1063/5.0138725
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xu_haibo@iapcm.ac.cn
  • Received Date: 2022-12-14
  • Accepted Date: 2023-04-19
  • Available Online: 2023-07-01
  • Publish Date: 2023-07-01
  • Diagnosis of fluids is extremely significant at high temperatures and high pressures. As an advanced imaging technique, high-energy proton radiography has great potential for application to the diagnosis of high-density fluids. In high-energy proton radiography, an angular collimator can control the proton flux and thus enable material diagnosis and reconstruction of density. In this paper, we propose a multi-material diagnostic method using angular collimators. The method is verified by reconstructing the density distribution from the proton flux obtained via theoretical calculations and numerical simulations. We simulate a 20 GeV proton imaging system using the Geant4 software toolkit and obtain the characteristic parameters of single-material objects. We design several concentric spherical objects to verify the method. We discuss its application to detonation tests. The results show that this method can determine the material and boundary information about each component of a multi-material object. Thus, it can be used to diagnose a mixed material and reconstruct densities in a detonation.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Feng Chen: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Writing – original draft (equal); Writing – review & editing (equal). Haibo Xu: Conceptualization (equal); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (lead); Resources (lead); Supervision (lead); Writing – original draft (equal); Writing – review & editing (lead). Junhui Shi: Supervision (equal); Writing – review & editing (equal). Xinge Li: Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Writing – review & editing (lead). Na Zheng: Formal analysis (equal); Methodology (equal); Supervision (lead); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    C. Morris, J. W. Hopson, and P. Goldstone, “Proton radiography,” Los Alamos Science 30, 32 (2006), https://library.lanl.gov/cgi-bin/getfile?30-04.pdf.
    [2]
    T. Wei, G.-J. Yang, J.-D. Long, S.-H. Wang, and X.-Z. He, “Imaging beamline for high energy proton radiography,” Chin. Phys. C 36, 792 (2012).10.1088/1674-1137/36/8/019
    [3]
    [4]
    [5]
    N. S. P. King, E. Ables, K. Adams, K. R. Alrick, J. F. Amann, S. Balzar, P. D. Barnes Jr., M. L. Crow, S. B. Cushing, J. C. Eddleman et al., “An 800 MeV proton radiography facility for dynamic experiments,” Nucl. Instrum. Methods Phys. Res., Sect. A 424, 84–91 (1999).10.1016/s0168-9002(98)01241-8
    [6]
    C. L. Morris, E. Ables, K. R. Alrick, M. B. Aufderheide, P. D. Barnes Jr., K. L. Buescher, D. J. Cagliostro, D. A. Clark, D. J. Clark, C. J. Espinoza et al., “Flash radiography with 24 GeV/c protons,” J. Appl. Phys. 109, 104905 (2011).10.1063/1.3580262
    [7]
    K. Kwiatkowski, J. F. Beche, M. T. Burks, G. Hart, G. E. Hogan, P. F. Manfredi, J. E. Millaud, C. L. Morris, N. S. P. King, P. D. Pazuchanics, and B. Turko, “Development of multiframe detectors for ultrafast radiography with 800 MeV protons,” IEEE Trans. Nucl. Sci. 49, 293–296 (2002).10.1109/tns.2002.998656
    [8]
    N. S. King, S. A. Baker, S. A. Jaramillo, K. Kwiatkowski, S. S. Lutz, G. E. Hogan, V. H. Holmes, C. L. Morris, P. T. Nedrow, P. D. Pazuchanics et al., “Imaging detector systems for soft x-ray and proton radiography,” Proc. SPIE 4948, 610–615 (2003).10.1117/12.516915
    [9]
    E. N. Ferm, S. Dennison, R. Lopez, K. Prestridge, J. P. Quintana, C. Espinoza, G. Hogan, N. King, J. D. Lopez, F. Merrill et al., “Proton radiography experiments on shocked high explosive products,” AIP Conf. Proc. 706, 839–842 (2004).10.1063/1.1780367
    [10]
    A. A. Golubev, V. S. Demidov, E. V. Demidova, S. V. Dudin, and B. Y. Sharkov, “Diagnostics of fast processes by charged particle beams at TWAC-ITEP accelerator-accumulator facility,” Tech. Phys. Lett. 36, 177–180 (2010).10.1134/s1063785010020252
    [11]
    Y. M. Antipov, A. G. Afonin, A. V. Vasilevskii, I. A. Gusev, and I. V. Khramov, “A radiographic facility for the 70-GeV proton accelerator of the institute for high energy physics,” Instrum. Exp. Tech. 53, 319–326 (2010).10.1134/s0020441210030012
    [12]
    V. V. Burtsev, A. I. Lebedev, A. L. Mikhailov, V. A. Ogorodnikov, and I. V. Khramov, “Use of multiframe proton radiography to investigate fast hydrodynamic processes,” Combust., Explos. Shock Waves 47, 627–638 (2011).10.1134/s0010508211060025
    [13]
    Yu. M. Antipov, A. G. Afonin, I. A. Gusev, V. I. Demyanchuk, O. V. Zyat’kov, N. A. Ignashin, A. V. Larionov, A. V. Maksimov, A. A. Matyushin, A. V. Minchenko et al., “Proton radiography: A new method and its implementation,” At. Energy 114, 359–363 (2013).10.1007/s10512-013-9724-9
    [14]
    A. V. Kantsyrev, A. A. Golubev, A. V. Bogdanov, V. S. Demidov, E. V. Demidova, E. M. Ladygina, N. V. Markov, V. S. Skachkov, G. N. Smirnov, I. V. Rudskoy et al., “TWAC-ITEP proton microscopy facility,” Instrum. Exp. Tech 57, 1 (2014).10.1134/S0020441214010151
    [15]
    A. V. Maksimov, N. E. Tyurin, and Y. S. Fedotov, “Optical system of the proton bombarding setup on the U-70 accelerator at the institute for high energy physics,” Tech. Phys. 59, 1393–1399 (2014).10.1134/s1063784214090163
    [16]
    F. E. Merrill, E. Campos, C. Espinoza, G. Hogan, B. Hollander, J. Lopez, F. G. Mariam, D. Morley, C. L. Morris, M. Murray, A. Saunders, C. Schwartz, and T. N. Thompson, “Magnifying lens for 800 Mev proton radiography,” Rev. Sci. Instrum 82, 103709 (2011).10.1063/1.3652974
    [17]
    M. Prall, P. M. Lang, C. Latessa, F. Mariam, F. Merrill, L. Shestov, P. Simoniello, D. Varentsov, and M. Durante, “Towards proton therapy and radiography at fair,” J. Phys. Conf. 599, 012041 (2015).10.1088/1742-6596/599/1/012041
    [18]
    Y. Guo-Jun, Z. Zhuo, W. Tao, H. Xiao-Zhong, L. Ji-Dong, S. Jin-Shui, and Z. Kai-Zhi, “A design study of a magnifying magnetic lens for proton radiography,” Chin. Phys. C 36, 247 (2012).10.1088/1674-1137/36/3/010.
    [19]
    T. Wei, G. J. Yang, Y. D. Li, J. D. Long, X. Z. He, X. D. Zhang, X. G. Jiang, C. F. Ma, L. C. Zhao, X. L. Yang et al., “First experimental research in low energy proton radiography,” Chin. Phys. C 38, 087003 (2014).10.1088/1674-1137/38/8/087003
    [20]
    L. Yiding, G. Yang, X. Zhang, T. Wei, and X. Jiang, “11 MeV low-energy magnifying pRad at CAEP,” Nucl. Instrum. Methods Phys. Res., Sect. A 814, 104 (2016).10.1016/j.nima.2016.01.011
    [21]
    X. D. Zhang, G. J. Yang, Y. D. Li, T. Wei, X. He, L. C. Zhao, Z. Zhang, C. Ma, X. Jiang, and J. Shi, “Demonstration of low energy proton radiography on an 11-MeV cyclotron,” Rev. Sci. Instrum. 87, 113306 (2016).10.1063/1.4967459
    [22]
    M. S. Freeman, J. Allison, C. Espinoza, J. J. Goett III, G. Hogan, B. Hollander, K. Kwiatkowski, J. Lopez, F. Mariam, M. Martinez et al., “800-MeV magnetic-focused flash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator,” Proc. SPIE 9783, 97831X (2016).10.1117/12.2216862
    [23]
    M. Prall, M. Durante, T. Berger, B. Przybyla, C. Graeff, P. M. Lang, C. LaTessa, L. Shestov, P. Simoniello, C. Danly et al., “High-energy proton imaging for biomedical applications,” Sci. Rep. 6, 27651 (2016).10.1038/srep27651
    [24]
    Y. Zhao, Z. Zhang, W. Gai, Y. Du, S. Cao, J. Qiu, Q. Zhao, R. Cheng, X. Zhou, J. Ren et al., “High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC,” Laser Part. Beams 34, 338 (2016).10.1017/s0263034616000124
    [25]
    Z. Zhou, Y. Fang, H. Chen, Y. Wu, Y. Du, Z. Zhang, Y. Zhao, M. Li, C. Tang, and W. Huang, “Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography,” Matter Radiat. Extremes 4, 065402 (2019).10.1063/1.5109855
    [26]
    D. Varentsov, O. Antonov, A. Bakhmutova, C. W. Barnes, A. Bogdanov, C. R. Danly, S. Efimov, M. Endres, A. Fertman, A. A. Golubev et al., “Commissioning of the prior proton microscope,” Rev. Sci. Instrum 87, 023303 (2016).10.1063/1.4941685
    [27]
    G.-J. Yang, Z. Zhang, T. Wei, Y.-D. Li, X.-D. Zhang, and J.-S. Shi, “Theoretical study of magnetic lens with parallel beam matched,” Nucl. Sci. Tech. 28, 17 (2017).10.1007/s41365-016-0168-5
    [28]
    M. B. Aufderheide III, H.-S. Park, E. P. Hartouni, P. D. Barnes, D. M. Wright, R. M. Bionta, J. D. Zumbro, and C. L. Morris, “Proton radiography as a means of material characterization,” AIP Conf. Proc. 497, 706 (1999).10.1063/1.1302079
    [29]
    C. Morris, “Proton radiography for an advanced hydrotest facility,” in Technical Report No. LA-UR-00-5716 (Los Alamos National Laboratory, NM, 2000).
    [30]
    [31]
    L. Jun, L. Jin, and S. Jiangjun, “Monte-Carlo research of flash radiography about FTO at 3m to the target,” High Power Laser Part. Beams 16, 1214–1217 (2004) http://www.hplpb.com.cn/article/id/610.
    [32]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/S0168-9002(03)01368-8
    [33]
    X. He, G. Yang, and C. Liu, “Optimization research on image lens of proton radiography,” High Power Laser Part. Beams 20, 297–300 (2008) http://www.hplpb.com.cn/article/id/3041.
    [34]
    A. C. Silva, H. J. Lawder, A. Hara, J. Kujak, and W. Pavlicek, “Innovations in CT dose reduction strategy: Application of the adaptive statistical iterative reconstruction algorithm,” Am. J. Roentgenol. 194, 191–199 (2010).10.2214/ajr.09.2953
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (38) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return