Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Yang X. H., Chen Z. H., Xu H., Ma Y. Y., Zhang G. B., Zou D. B., Shao F. Q.. Hybrid PIC–fluid simulations for fast electron transport in a silicon target[J]. Matter and Radiation at Extremes, 2023, 8(3): 035901. doi: 10.1063/5.0137973
Citation: Yang X. H., Chen Z. H., Xu H., Ma Y. Y., Zhang G. B., Zou D. B., Shao F. Q.. Hybrid PIC–fluid simulations for fast electron transport in a silicon target[J]. Matter and Radiation at Extremes, 2023, 8(3): 035901. doi: 10.1063/5.0137973

Hybrid PIC–fluid simulations for fast electron transport in a silicon target

doi: 10.1063/5.0137973
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xhyang@nudt.edu.cn
  • Received Date: 2022-12-07
  • Accepted Date: 2023-03-21
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.
  • loading
  • [1]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626 (1994).10.1063/1.870664
    [2]
    X. H. Yang, H. B. Zhuo, H. Xu, Z. Y. Ge, F. Q. Shao, M. Borghesi, and Y. Y. Ma, “Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses,” Phys. Plasmas 23, 103110 (2016).10.1063/1.4966205
    [3]
    A. Debayle, J. J. Honrubia, E. d’Humières, and V. T. Tikhonchuk, “Divergence of laser-driven relativistic electron beams,” Phys. Rev. E 82, 036405 (2010).10.1103/physreve.82.036405
    [4]
    V. M. Ovchinnikov, D. W. Schumacher, M. McMahon, E. A. Chowdhury, C. D. Chen, A. Morace, and R. R. Freeman, “Effects of preplasma scale length and laser intensity on the divergence of laser-generated hot electrons,” Phys. Rev. Lett. 110, 065007 (2013).10.1103/physrevlett.110.065007
    [5]
    L. Gremillet, D. Bénisti, E. Lefebvre, and A. Bret, “Linear and nonlinear development of oblique beam-plasma instabilities in the relativistic kinetic regime,” Phys. Plasmas 14, 040704 (2007).10.1063/1.2714509
    [6]
    B. Hao, W. J. Ding, Z. M. Sheng, C. Ren, X. Kong, J. Mu, and J. Zhang, “Collisional effects on the oblique instability in relativistic beam-plasma interactions,” Phys. Plasmas 19, 072709 (2012).10.1063/1.4736980
    [7]
    A. Bret, “Weibel, two-stream, filamentation, oblique, Bell, Buneman…which one grows faster?,” Astrophys. J 699, 990–1003 (2009).10.1088/0004-637x/699/2/990
    [8]
    P. Norreys, D. Batani, S. Baton, F. N. Beg, R. Kodama, P. M. Nilson, P. Patel, F. Pérez, J. J. Santos, R. H. H. Scott, V. T. Tikhonchuk, M. Wei, and J. Zhang, “Fast electron energy transport in solid density and compressed plasma,” Nucl. Fusion 54, 054004 (2014).10.1088/0029-5515/54/5/054004
    [9]
    A. P. L. Robinson, M. Sherlock, and P. A. Norreys, “Artificial collimation of fast-electron beams with two laser pulses,” Phys. Rev. Lett. 100, 025002 (2008).10.1103/PhysRevLett.100.025002
    [10]
    C. T. Zhou, L. Y. Chew, and X. T. He, “Propagation of energetic electrons in a hollow plasma fiber,” Appl. Phys. Lett. 97, 051502 (2010).10.1063/1.3475414
    [11]
    Y. Zeng, Y. Tian, C. Zhou, Z. Li, J. Liu, and Z. Xu, “Experimental study on laser-driven electron collimation along wire targets,” Phys. Plasmas 26, 012701 (2019).10.1063/1.5045270
    [12]
    D. A. MacLellan, D. C. Carroll, R. J. Gray, N. Booth, M. Burza, M. P. Desjarlais, F. Du, D. Neely, H. W. Powell, A. P. L. Robinson, G. G. Scott, X. H. Yuan, C.-G. Wahlström, and P. McKenna, “Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt,” Phys. Rev. Lett. 113, 185001 (2014).10.1103/physrevlett.113.185001
    [13]
    X. Vaisseau, A. Morace, M. Touati, M. Nakatsutsumi, S. D. Baton, S. Hulin, P. Nicolaï, R. Nuter, D. Batani, F. N. Beg, J. Breil, R. Fedosejevs, J.-L. Feugeas, P. Forestier-Colleoni, C. Fourment, S. Fujioka, L. Giuffrida, S. Kerr, H. S. McLean, H. Sawada, V. T. Tikhonchuk, and J. J. Santos, “Collimated propagation of fast electron beams accelerated by high-contrast laser pulses in highly resistive shocked carbon,” Phys. Rev. Lett. 118, 205001 (2017).10.1103/physrevlett.118.205001
    [14]
    R. B. Campbell, J. S. DeGroot, T. A. Mehlhorn, D. R. Welch, and B. V. Oliver, “Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter,” Phys. Plasmas 10, 4169 (2003).10.1063/1.1609444
    [15]
    H. B. Cai, K. Mima, W. M. Zhou, T. Jozaki, H. Nagatomo, A. Sunahara, and R. J. Mason, “Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition,” Phys. Rev. Lett 102, 245001 (2009).10.1103/physrevlett.102.245001.
    [16]
    X. H. Yang, H. Xu, Y. Y. Ma, F. Q. Shao, Y. Yin, H. B. Zhuo, M. Y. Yu, and C. L. Tian, “Propagation of attosecond electron bunches along the cone-and-channel target,” Phys. Plasmas 18, 023109 (2011).10.1063/1.3554651
    [17]
    R. Kodama, Y. Sentoku, Z. L. Chen, G. R. Kumar, S. P. Hatchett, Y. Toyama, T. E. Cowan, R. R. Freeman, J. Fuchs, Y. Izawa, M. H. Key, Y. Kitagawa, K. Kondo, T. Matsuoka, H. Nakamura, M. Nakatsutsumi, P. A. Norreys, T. Norimatsu, R. A. Snavely, R. B. Stephens, M. Tampo, K. A. Tanaka, and T. Yabuuchi, “Plasma devices to guide and collimate a high density of MeV electrons,” Nature 432, 1005 (2004).10.1038/nature03133
    [18]
    S. Kar, A. P. L. Robinson, D. C. Carroll, O. Lundh, K. Markey, P. McKenna, P. Norreys, and M. Zepf, “Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields,” Phys. Rev. Lett. 102, 055001 (2009).10.1103/PhysRevLett.102.055001
    [19]
    H. Xu, X. H. Yang, J. Liu, and M. Borghesi, “Control of fast electron propagation in foam target by high-Z doping,” Plasma Phys. Controlled Fusion 61, 025010 (2019).10.1088/1361-6587/aaefce
    [20]
    H. Xu, X. H. Yang, Z. M. Sheng, P. McKenna, Y. Y. Ma, H. B. Zhuo, Y. Yin, C. Ren, and J. Zhang, “Collimation of high-current fast electrons in dense plasmas with a tightly focused precursor intense laser pulse,” Nucl. Fusion 59, 126024 (2019).10.1088/1741-4326/ab45a2
    [21]
    X. H. Yang, H. Xu, Y. Y. Ma, Z. Y. Ge, H. B. Zhuo, and F. Q. Shao, “Energy deposition of fast electrons in dense magnetized plasmas,” Phys. Plasmas 25, 063104 (2018).10.1063/1.5023779
    [22]
    W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).10.1103/PhysRevLett.114.015001
    [23]
    M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J.-L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J.-R. Marquès, A. Morace, P. Nicolaï, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, and Z. Zhang, “Guiding of relativistic electron beams in dense matter by laser driven magnetostatic fields,” Nat. Commun. 9, 102 (2018).10.1038/s41467-017-02641-7
    [24]
    Y. Cao, X. H. Yang, T. P. Yu, Y. Y. Ma, M. Y. Yu, L. X. Hu, G. B. Zhang, H. Xu, and Y. Lang, “Transport of fast electron beam in mirror-field magnetized solid-density plasma,” Phys. Plasmas 28, 102701 (2021).10.1063/5.0055714
    [25]
    J. R. Davies, A. R. Bell, M. G. Haines, and S. M. Guérin, “Short-pulse high-intensity laser-generated fast electron transport into thick solid targets,” Phys. Rev. E 56, 7193 (1997).10.1103/physreve.56.7193
    [26]
    P. Antici, L. Gremillet, T. Grismayer, P. Mora, P. Audebert, M. Borghesi, C. A. Cecchetti, A. Mančic, and J. Fuchs, “Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets,” Phys. Plasmas 20, 123116 (2013).10.1063/1.4833618
    [27]
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Hüller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202 (2000).10.1103/physreve.62.1202
    [28]
    A. P. L. Robinson, H. Schmitz, and P. McKenna, “Resistivity of non-crystalline carbon in the 1–100 eV range,” New J. Phys. 17, 083045 (2015).10.1088/1367-2630/17/8/083045
    [29]
    D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp, C. Bellei, M. M. Marinak, and M. H. Key, “Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields,” Phys. Plasmas 19, 072711 (2012).10.1063/1.4739294
    [30]
    L. Spitzer, Physics of Fully Ionized Gasses (Wiley, 1962).
    [31]
    X. H. Yang, C. Ren, H. Xu, Y. Y. Ma, and F. Q. Shao, “Transport of ultraintense laser-driven relativistic electrons in dielectric targets,” High Power Laser Sci. Eng. 8, e2 (2020).10.1017/hpl.2019.53
    [32]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulse,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [33]
    F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447 (1997).10.1063/1.872103
    [34]
    M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).10.1103/PhysRevLett.102.045008
    [35]
    J. R. Davies, “Laser absorption by overdense plasmas in the relativistic regime,” Plasma Phys. Controlled Fusion 51, 014006 (2009).10.1088/0741-3335/51/1/014006
    [36]
    J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies, and P. A. Norreys, “Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas,” Phys. Rev. Lett. 100, 015003 (2008).10.1103/PhysRevLett.100.015003
    [37]
    Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273 (1984).10.1063/1.864744
    [38]
    R. M. More, “Pressure ionization, resonances, and the continuity of bound and free states,” Adv. At. Mol. Phys. 21, 305–356 (1985).10.1016/s0065-2199(08)60145-1
    [39]
    L. Gremillet, G. Bonnaud, and F. Amiranoff, “Filamented transport of laser-generated relativistic electrons penetrating a solid target,” Phys. Plasmas 9, 941 (2002).10.1063/1.1432994
    [40]
    A. Bret, M.-C. Firpo, and C. Deutsch, “Characterization of the initial filamentation of a relativistic electron beam passing through a plasma,” Phys. Rev. Lett. 94, 115002 (2005).10.1103/physrevlett.94.115002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (76) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return