Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Guo Yi, Zhang Xiaomei, Xu Dirui, Guo Xinju, Shen Baifei, Lan Ke. Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle[J]. Matter and Radiation at Extremes, 2023, 8(3): 035902. doi: 10.1063/5.0136567
Citation: Guo Yi, Zhang Xiaomei, Xu Dirui, Guo Xinju, Shen Baifei, Lan Ke. Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle[J]. Matter and Radiation at Extremes, 2023, 8(3): 035902. doi: 10.1063/5.0136567

Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle

doi: 10.1063/5.0136567
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zhxm@shnu.edu.cn and bfshen@shnu.edu.cn
  • Received Date: 2022-11-27
  • Accepted Date: 2023-03-21
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • Laser–plasma instability (LPI) is one of the main obstacles to achieving predictable and reproducible fusion at high gain through laser-driven inertial confinement fusion (ICF). In this paper, for the first time, we show analytically and confirm with three-dimensional particle-in-cell simulations that angular incoherence provides suppression of the instability growth rate that is additional to and much stronger than that provided by the well-known temporal and spatial incoherence usually used in ICF studies. For the model used in our calculations, the maximum field ratio between the stimulated Raman scattering and the driving pulses drops from 0.2 for a Laguerre–Gaussian pulse with a single nonzero topological charge to 0.05 for a super light spring with an angular momentum spread and random relative phases. In particular, angular incoherence does not introduce extra undesirable hot electrons. This provides a novel method for suppressing LPI by using light with an angular momentum spread and paves the way towards a low-LPI laser system for inertial fusion energy with a super light spring of incoherence in all dimensions of time, space, and angle, and may open the door to the use of longer-wavelength lasers for inertial fusion energy.
  • loading
  • [1]
    J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
    [2]
    J. L. Kline, D. A. Callahan, S. H. Glenzer, N. B. Meezan, J. D. Moody, D. E. Hinkel, O. S. Jones, A. J. MacKinnon, R. Bennedetti, R. L. Berger et al., “Hohlraum energetics scaling to 520 TW on the National Ignition Facility,” Phys. Plasmas 20, 056314 (2013).10.1063/1.4803907
    [3]
    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska et al., “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
    [4]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science, Oxford, 2004).
    [5]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [6]
    K. Lan, “Dream fusion in octahedral spherical hohlraum,” Matter Radiat. Extremes 7, 055701 (2022).10.1063/5.0103362
    [7]
    Y. Ping, V. A. Smalyuk, P. Amendt, R. Tommasini, J. E. Field, S. Khan, D. Bennett, E. Dewald, F. Graziani, S. Johnson et al., “Enhanced energy coupling for indirectly driven inertial confinement fusion,” Nat. Phys. 15, 138–141 (2019).10.1038/s41567-018-0331-5
    [8]
    S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan et al., “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231 (2010).10.1126/science.1185634
    [9]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [10]
    J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley, D. A. Callahan, E. L. Dewald, S. Dixit, M. J. Edwards et al., “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344–349 (2012).10.1038/nphys2239
    [11]
    A. R. Christopherson, R. Betti, C. J. Forrest, J. Howard, W. Theobald, J. A. Delettrez, M. J. Rosenberg, A. A. Solodov, C. Stoeckl, D. Patel et al., “Direct measurements of DT fuel preheat from hot electrons in direct-drive inertial confinement fusion,” Phys. Rev. Lett. 127, 055001 (2021).10.1103/PhysRevLett.127.055001
    [12]
    J. Nilsen, A. L. Kritcher, M. E. Martin, R. E. Tipton, H. D. Whitley, D. C. Swift, T. Döppner, B. L. Bachmann, A. E. Lazicki, N. B. Kostinski et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
    [13]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu et al., “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [14]
    B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/PhysRevLett.113.045002
    [15]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).10.1063/1.344101
    [16]
    E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, and E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).10.1063/1.872957
    [17]
    J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, and P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).10.1103/physrevlett.86.2810
    [18]
    G. Cristoforetti, S. Hüller, P. Koester, L. Antonelli, S. Atzeni, F. Baffigi, D. Batani, C. Baird, N. Booth, M. Galimberti et al., “Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for shock ignition,” High Power Laser Sci. Eng. 9, e60 (2021).10.1017/hpl.2021.48
    [19]
    J. J. Thomson and J. I. Karush, “Effects of finite‐bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608–1613 (1974).10.1063/1.1694940
    [20]
    S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36, 1309–1312 (1976).10.1103/physrevlett.36.1309
    [21]
    P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas,” Phys. Fluids B 3, 2882–2888 (1991).10.1063/1.859921
    [22]
    E. S. Dodd and D. Umstadter, “Coherent control of stimulated Raman scattering using chirped laser pulses,” Phys. Plasmas 8, 3531–3534 (2001).10.1063/1.1382820
    [23]
    J. E. Santos, L. O. Silva, and R. Bingham, “White-light parametric instabilities in plasmas,” Phys. Rev. Lett. 98, 235001 (2007).10.1103/physrevlett.98.235001
    [24]
    Y. Zhao, L.-L. Yu, J. Zheng, S.-M. Weng, C. Ren, C.-S. Liu, and Z.-M. Sheng, “Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma,” Phys. Plasmas 22, 052119 (2015).10.1063/1.4921659
    [25]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
    [26]
    Y. Zhao, S. Weng, Z. Sheng, and J. Zhu, “Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light,” Plasma Phys. Controlled Fusion 61, 115008 (2019).10.1088/1361-6587/ab4691
    [27]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [28]
    Y. Zhao, Z. Sheng, Z. Cui, L. Ren, and J. Zhu, “Polychromatic drivers for inertial fusion energy,” New J. Phys. 24, 043025 (2022).10.1088/1367-2630/ac608c
    [29]
    E. M. Campbell and W. J. Hogan, “The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41, B39–B56 (1999).10.1088/0741-3335/41/12b/303
    [30]
    S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169
    [31]
    A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, J. E. Ralph, D. T. Casey, A. Pak, O. L. Landen, B. Bachmann, K. L. Baker et al., “Experimental achievement and signatures of ignition at the National Ignition Facility,” Phys. Rev. E 106, 025202 (2022).10.1103/PhysRevE.106.025202
    [32]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [33]
    [34]
    [35]
    J. Tollefson and E. Gibney, “Nuclear-fusion lab achieves ‘ignition’: What does it mean?,” Nature 612, 597–598 (2022).10.1038/d41586-022-04440-7
    [36]
    J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).10.1103/PhysRevLett.102.185005
    [37]
    R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Raman scattering of a laser beam carrying an orbital angular momentum,” Phys. Plasmas 29, 062101 (2022).10.1063/5.0086700
    [38]
    J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).10.1038/ncomms10371
    [39]
    J. A. Arteaga, A. Serbeto, K. H. Tsui, and J. T. Mendonça, “Light spring amplification in a multi-frequency Raman amplifier,” Phys. Plasmas 25, 123111 (2018).10.1063/1.5068770
    [40]
    G. Pariente and F. Quéré, “Spatio-temporal light springs: Extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40, 2037–2040 (2015).10.1364/ol.40.002037
    [41]
    J. Vieira, J. T. Mendonça, and F. Quéré, “Optical control of the topology of laser-plasma accelerators,” Phys. Rev. Lett. 121, 054801 (2018).10.1103/PhysRevLett.121.054801
    [42]
    J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth, “Parametric instabilities of electromagnetic waves in plasmas,” Phys. Fluids 17, 778–785 (1974).10.1063/1.1694789
    [43]
    D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Theory of stimulated scattering processes in laser‐irradiated plasmas,” Phys. Fluids 18, 1002–1016 (1975).10.1063/1.861248
    [44]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (50) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return