Citation: | Guo Yi, Zhang Xiaomei, Xu Dirui, Guo Xinju, Shen Baifei, Lan Ke. Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle[J]. Matter and Radiation at Extremes, 2023, 8(3): 035902. doi: 10.1063/5.0136567 |
[1] |
J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
|
[2] |
J. L. Kline, D. A. Callahan, S. H. Glenzer, N. B. Meezan, J. D. Moody, D. E. Hinkel, O. S. Jones, A. J. MacKinnon, R. Bennedetti, R. L. Berger et al., “Hohlraum energetics scaling to 520 TW on the National Ignition Facility,” Phys. Plasmas 20, 056314 (2013).10.1063/1.4803907
|
[3] |
V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska et al., “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
|
[4] |
S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science, Oxford, 2004).
|
[5] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
|
[6] |
K. Lan, “Dream fusion in octahedral spherical hohlraum,” Matter Radiat. Extremes 7, 055701 (2022).10.1063/5.0103362
|
[7] |
Y. Ping, V. A. Smalyuk, P. Amendt, R. Tommasini, J. E. Field, S. Khan, D. Bennett, E. Dewald, F. Graziani, S. Johnson et al., “Enhanced energy coupling for indirectly driven inertial confinement fusion,” Nat. Phys. 15, 138–141 (2019).10.1038/s41567-018-0331-5
|
[8] |
S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan et al., “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231 (2010).10.1126/science.1185634
|
[9] |
J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
|
[10] |
J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley, D. A. Callahan, E. L. Dewald, S. Dixit, M. J. Edwards et al., “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344–349 (2012).10.1038/nphys2239
|
[11] |
A. R. Christopherson, R. Betti, C. J. Forrest, J. Howard, W. Theobald, J. A. Delettrez, M. J. Rosenberg, A. A. Solodov, C. Stoeckl, D. Patel et al., “Direct measurements of DT fuel preheat from hot electrons in direct-drive inertial confinement fusion,” Phys. Rev. Lett. 127, 055001 (2021).10.1103/PhysRevLett.127.055001
|
[12] |
J. Nilsen, A. L. Kritcher, M. E. Martin, R. E. Tipton, H. D. Whitley, D. C. Swift, T. Döppner, B. L. Bachmann, A. E. Lazicki, N. B. Kostinski et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
|
[13] |
Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu et al., “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
|
[14] |
B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/PhysRevLett.113.045002
|
[15] |
S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).10.1063/1.344101
|
[16] |
E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, and E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).10.1063/1.872957
|
[17] |
J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, and P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).10.1103/physrevlett.86.2810
|
[18] |
G. Cristoforetti, S. Hüller, P. Koester, L. Antonelli, S. Atzeni, F. Baffigi, D. Batani, C. Baird, N. Booth, M. Galimberti et al., “Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for shock ignition,” High Power Laser Sci. Eng. 9, e60 (2021).10.1017/hpl.2021.48
|
[19] |
J. J. Thomson and J. I. Karush, “Effects of finite‐bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608–1613 (1974).10.1063/1.1694940
|
[20] |
S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36, 1309–1312 (1976).10.1103/physrevlett.36.1309
|
[21] |
P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas,” Phys. Fluids B 3, 2882–2888 (1991).10.1063/1.859921
|
[22] |
E. S. Dodd and D. Umstadter, “Coherent control of stimulated Raman scattering using chirped laser pulses,” Phys. Plasmas 8, 3531–3534 (2001).10.1063/1.1382820
|
[23] |
J. E. Santos, L. O. Silva, and R. Bingham, “White-light parametric instabilities in plasmas,” Phys. Rev. Lett. 98, 235001 (2007).10.1103/physrevlett.98.235001
|
[24] |
Y. Zhao, L.-L. Yu, J. Zheng, S.-M. Weng, C. Ren, C.-S. Liu, and Z.-M. Sheng, “Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma,” Phys. Plasmas 22, 052119 (2015).10.1063/1.4921659
|
[25] |
Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
|
[26] |
Y. Zhao, S. Weng, Z. Sheng, and J. Zhu, “Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light,” Plasma Phys. Controlled Fusion 61, 115008 (2019).10.1088/1361-6587/ab4691
|
[27] |
H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
|
[28] |
Y. Zhao, Z. Sheng, Z. Cui, L. Ren, and J. Zhu, “Polychromatic drivers for inertial fusion energy,” New J. Phys. 24, 043025 (2022).10.1088/1367-2630/ac608c
|
[29] |
E. M. Campbell and W. J. Hogan, “The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41, B39–B56 (1999).10.1088/0741-3335/41/12b/303
|
[30] |
S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169
|
[31] |
A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, J. E. Ralph, D. T. Casey, A. Pak, O. L. Landen, B. Bachmann, K. L. Baker et al., “Experimental achievement and signatures of ignition at the National Ignition Facility,” Phys. Rev. E 106, 025202 (2022).10.1103/PhysRevE.106.025202
|
[32] |
J. Lindl, O. Landen, J. Edwards, E. Moses, and N. Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
|
[33] | |
[34] | |
[35] |
J. Tollefson and E. Gibney, “Nuclear-fusion lab achieves ‘ignition’: What does it mean?,” Nature 612, 597–598 (2022).10.1038/d41586-022-04440-7
|
[36] |
J. T. Mendonça, B. Thidé, and H. Then, “Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum,” Phys. Rev. Lett. 102, 185005 (2009).10.1103/PhysRevLett.102.185005
|
[37] |
R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Raman scattering of a laser beam carrying an orbital angular momentum,” Phys. Plasmas 29, 062101 (2022).10.1063/5.0086700
|
[38] |
J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).10.1038/ncomms10371
|
[39] |
J. A. Arteaga, A. Serbeto, K. H. Tsui, and J. T. Mendonça, “Light spring amplification in a multi-frequency Raman amplifier,” Phys. Plasmas 25, 123111 (2018).10.1063/1.5068770
|
[40] |
G. Pariente and F. Quéré, “Spatio-temporal light springs: Extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40, 2037–2040 (2015).10.1364/ol.40.002037
|
[41] |
J. Vieira, J. T. Mendonça, and F. Quéré, “Optical control of the topology of laser-plasma accelerators,” Phys. Rev. Lett. 121, 054801 (2018).10.1103/PhysRevLett.121.054801
|
[42] |
J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth, “Parametric instabilities of electromagnetic waves in plasmas,” Phys. Fluids 17, 778–785 (1974).10.1063/1.1694789
|
[43] |
D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Theory of stimulated scattering processes in laser‐irradiated plasmas,” Phys. Fluids 18, 1002–1016 (1975).10.1063/1.861248
|
[44] |
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|