Citation: | Wang Yuanyuan, Li Zhihui, Niu Shifeng, Yi Wencai, Liu Shuang, Yao Zhen, Liu Bingbing. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401. doi: 10.1063/5.0136443 |
[1] |
X. Q. Chen, C. L. Fu, and R. Podloucky, “Bonding and strength of solid nitrogen in the cubic gauche (cg-N) structure,” Phys. Rev. B 77, 064103 (2008).10.1103/physrevb.77.064103
|
[2] |
M. Sun, Y. Yin, and Z. Pang, “Predicted new structures of polymeric nitrogen under 100–600 GPa,” Comput. Mater. Sci. 98, 399–404 (2015).10.1016/j.commatsci.2014.11.040
|
[3] |
X. Wang, F. Tian, L. Wang, X. Jin, D. Duan, X. Huang, B. Liu, and T. Cui, “Predicted novel metallic metastable phases of polymeric nitrogen at high pressures,” New J. Phys. 15, 013010 (2013).10.1088/1367-2630/15/1/013010
|
[4] |
X. Wang, F. Tian, L. Wang, T. Cui, B. Liu, and G. Zou, “Structural stability of polymeric nitrogen: A first-principles investigation,” J. Chem. Phys. 132, 024502 (2010).10.1063/1.3290954
|
[5] |
S. V. Bondarchuk and B. F. Minaev, “Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties,” Comput. Mater. Sci. 133, 122–129 (2017).10.1016/j.commatsci.2017.03.007
|
[6] |
F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, “Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation,” Phys. Rev. B 72, 214108 (2005).10.1103/physrevb.72.214108
|
[7] |
Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, “Novel high pressure structures of polymeric nitrogen,” Phys. Rev. Lett. 102, 065501 (2009).10.1103/PhysRevLett.102.065501
|
[8] |
X. L. Wang, Z. He, Y. M. Ma, T. Cui, Z. M. Liu, B. B. Liu, J. F. Li, and G. T. Zou, “Prediction of a new layered phase of nitrogen from first-principles simulations,” J. Phys.: Condens. Matter 19, 425226 (2007).10.1088/0953-8984/19/42/425226
|
[9] |
J. Kotakoski and K. Albe, “First-principles calculations on solid nitrogen: A comparative study of high-pressure phases,” Phys. Rev. B 77, 144109 (2008).10.1103/physrevb.77.144109
|
[10] |
W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, “Prediction of new phases of nitrogen at high pressure from first-principles simulations,” Phys. Rev. Lett. 93, 125501 (2004).10.1103/physrevlett.93.125501
|
[11] |
X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv, T. Cui, J. Li, L. Chen, C. J. Pickard, and Y. Ma, “Cagelike diamondoid nitrogen at high pressures,” Phys. Rev. Lett. 109, 175502 (2012).10.1103/physrevlett.109.175502
|
[12] |
M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
|
[13] |
D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502
|
[14] |
D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/PhysRevLett.122.066001
|
[15] |
D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
|
[16] |
D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
|
[17] |
Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S. Q. Jiang, E. Greenberg, S. Chariton, V. B. Prakapenka, A. R. Oganov, and A. F. Goncharov, “Stabilization of hexazine rings in potassium polynitride at high pressure,” Nat. Chem. 14, 794–800 (2022).10.1038/s41557-022-00925-0
|
[18] |
D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, “Synthesis of magnesium-nitrogen salts of polynitrogen anions,” Nat. Commun. 10, 4515 (2019).10.1038/s41467-019-12530-w
|
[19] |
B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735–741 (2016).10.1021/acs.chemmater.6b04538
|
[20] |
D. Laniel, A. A. Aslandukova, A. N. Aslandukov, T. Fedotenko, S. Chariton, K. Glazyrin, V. B. Prakapenka, L. S. Dubrovinsky, and N. Dubrovinskaia, “High-pressure synthesis of the beta-Zn3N2 nitride and the alpha-ZnN4 and beta-ZnN4 polynitrogen compounds,” Inorg. Chem. 60, 14594–14601 (2021).10.1021/acs.inorgchem.1c01532
|
[21] |
M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnadi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, “High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
|
[22] |
M. Zhang, H. Yan, and Q. Wei, “Une xpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M = Ti, Zr, and Hf),” J. Alloys Compd. 774, 918–925 (2019).10.1016/j.jallcom.2018.09.337
|
[23] |
J. Zhang, X. Li, X. Dong, H. Dong, A. R. Oganov, and J. M. McMahon, “Theoretical study of the crystal structure, stability, and properties of phases in the V-N system,” Phys. Rev. B 104, 134111 (2021).10.1103/physrevb.104.134111
|
[24] |
X. Wang, J. Li, J. Botana, M. Zhang, H. Zhu, L. Chen, L. Liu, T. Cui, and M. Miao, “Polymerization of nitrogen in lithium azide,” J. Chem. Phys. 139, 164710 (2013).10.1063/1.4826636
|
[25] |
X. Wang, J. Li, H. Zhu, L. Chen, and H. Lin, “Polymerization of nitrogen in cesium azide under modest pressure,” J. Chem. Phys. 141, 044717 (2014).10.1063/1.4891367
|
[26] |
M. Zhang, K. Yin, X. Zhang, H. Wang, Q. Li, and Z. Wu, “Structural and electronic properties of sodium azide at high pressure: A first principles study,” Solid State Commun. 161, 13–18 (2013).10.1016/j.ssc.2013.01.032
|
[27] |
J. Lin, F. Wang, Q. Rui, J. Li, Q. Wang, and X. Wang, “A novel square planar N42− ring with aromaticity in BeN4,” Matter Radiat. Extremes 7, 038401 (2022).10.1063/5.0084802
|
[28] |
S. Niu, D. Xu, H. Li, Z. Yao, S. Liu, C. Zhai, K. Hu, X. Shi, P. Wang, and B. Liu, “Pressure-stabilized polymerization of nitrogen in manganese nitrides at ambient and high pressures,” Phys. Chem. Chem. Phys. 24, 5738 (2022).10.1039/d1cp03068j
|
[29] |
K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao, Q. Wu, and J. Sun, “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
|
[30] |
J. Yuan, K. Xia, J. Wu, and J. Sun, “High-energy-density pentazolate salts: CaN10 and BaN10,” Sci. China-Phys. Mech. Astron. 64, 218211 (2020).10.1007/s11433-020-1595-2
|
[31] |
W. Lu, K. Hao, S. Liu, J. Lv, M. Zhou, and P. Gao, “Pressure-stabilized high-energy-density material YN10,” J. Phys.: Condens. Matter 34, 135403 (2022).10.1088/1361-648x/ac48c0
|
[32] |
K. Xia, J. Yuan, X. Zheng, C. Liu, H. Gao, Q. Wu, and J. Sun, “Predictions on high-power trivalent metal pentazolate salts,” J. Phys. Chem. Lett. 10, 6166–6173 (2019).10.1021/acs.jpclett.9b02383
|
[33] |
B. Wang, R. Larhlimi, H. Valencia, F. Guégan, and G. Frapper, “Prediction of novel tin nitride SnxNy phases under pressure,” J. Phys. Chem. C 124, 8080–8093 (2020).10.1021/acs.jpcc.9b11404
|
[34] |
W. Yi, L. Zhao, X. Liu, X. Chen, Y. Zheng, and M. Miao, “Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds,” Mater. Des. 193, 108820 (2020).10.1016/j.matdes.2020.108820
|
[35] |
J. Zhang, Z. Zeng, H. Q. Lin, and Y. L. Li, “Pressure-induced planar N6 rings in potassium azide,” Sci. Rep. 4, 4358 (2014).10.1038/srep04358
|
[36] |
K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H. T. Wang, and D. Xing, “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817–824 (2018).10.1016/j.scib.2018.05.027
|
[37] |
Z. Liu, D. Li, Q. Zhuang, F. Tian, D. Duan, F. Li, and T. Cui, “Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions,” Commun. Chem. 3, 42 (2020).10.1038/s42004-020-0286-1
|
[38] |
L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, “Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species,” Chem. Mater. 30, 8476–8485 (2018).10.1021/acs.chemmater.8b02972
|
[39] |
X. Zhang, X. Xie, H. Dong, X. Zhang, F. Wu, Z. Mu, and M. Wen, “Pressure-induced high-energy-density BeN4 materials with nitrogen chains: First-principles study,” J. Phys. Chem. C 125, 25376–25382 (2021).10.1021/acs.jpcc.1c07500
|
[40] |
L. Wu, P. Zhou, Y. Li, B. Wan, S. Sun, J. Xu, J. Sun, B. Liao, and H. Gou, “Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains,” J. Mater. Sci. 56, 3814–3826 (2020).10.1007/s10853-020-05512-7
|
[41] |
Y. Guo, S. Wei, Z. Liu, H. Sun, G. Yin, S. Chen, Z. Yu, Q. Chang, and Y. Sun, “Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN6 and ScN7 under modest pressure,” New J. Phys. 24, 083015 (2022).10.1088/1367-2630/ac8443
|
[42] |
J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
|
[43] |
S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure,” J. Phys. Chem. C 121, 11037–11046 (2017).10.1021/acs.jpcc.7b00474
|
[44] |
B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623–7636 (2018).10.1021/acs.chemmater.8b02907
|
[45] |
J. Lin, D. Peng, Q. Wang, J. Li, H. Zhu, and X. Wang, “Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions,” Phys. Chem. Chem. Phys. 23, 6863–6870 (2021).10.1039/d0cp05402j
|
[46] |
S. Liu, R. Liu, H. Li, Z. Yao, X. Shi, P. Wang, and B. Liu, “Cobalt-nitrogen compounds at high pressure,” Inorg. Chem. 60, 14022–14030 (2021).10.1021/acs.inorgchem.1c01304
|
[47] |
S. Niu, Z. Li, H. Li, X. Shi, Z. Yao, and B. Liu, “New cadmium-nitrogen compounds at high pressures,” Inorg. Chem. 60, 6772–6781 (2021).10.1021/acs.inorgchem.1c00601
|
[48] |
B. A. Steele and I. I. Oleynik, “Novel potassium polynitrides at high pressures,” J. Phys. Chem. A 121, 8955–8961 (2017).10.1021/acs.jpca.7b08974
|
[49] |
S. Wei, D. Li, Z. Liu, W. Wang, F. Tian, K. Bao, D. Duan, B. Liu, and T. Cui, “A novel polymerization of nitrogen in beryllium tetranitride at high pressure,” J. Phys. Chem. C 121, 9766–9772 (2017).10.1021/acs.jpcc.7b02592
|
[50] |
J. Hou, X. J. Weng, A. R. Oganov, X. Shao, G. Gao, X. Dong, H. T. Wang, Y. Tian, and X. F. Zhou, “Helium-nitrogen mixtures at high pressure,” Phys. Rev. B 103, L060102 (2021).10.1103/physrevb.103.l060102
|
[51] |
Z. Liu, D. Li, Y. Liu, T. Cui, F. Tian, and D. Duan, “Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides,” Phys. Chem. Chem. Phys. 21, 12029 (2019).10.1039/c9cp01723b
|
[52] |
L. Liu, D. Wang, S. Zhang, and H. Zhang, “Pressure-stabilized GdN6 with an armchair–antiarmchair structure as a high energy density material,” J. Mater. Chem. A 9, 16751–16758 (2021).10.1039/d1ta03381f
|
[53] |
H. Cai, X. Wang, Y. Zheng, X. Jiang, J. Zeng, Y. Feng, and K. Chen, “Prediction of erbium–nitrogen compounds as high-performance high-energy-density materials,” J. Phys.: Condens. Matter 35, 085701 (2023).10.1088/1361-648x/aca861
|
[54] |
X. Hu, Y. Sun, S. Guo, J. Sun, Y. Fu, S. Chen, S. Zhang, and J. Zhu, “Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions,” Appl. Catal., B 280, 119419 (2021).10.1016/j.apcatb.2020.119419
|
[55] |
J. Qi, S. Zhou, K. Xie, and S. Lin, “Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia,” J. Energy Chem. 60, 249–258 (2021).10.1016/j.jechem.2021.01.016
|
[56] |
B. Xu, L. Xia, F. Zhou, R. Zhao, H. Chen, T. Wang, Q. Zhou, Q. Liu, G. Cui, X. Xiong, F. Gong, and X. Sun, “Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies,” ACS Sustainable Chem. Eng. 7, 2889–2893 (2019).10.1021/acssuschemeng.8b05007
|
[57] |
V. Kanchana, G. Vaitheeswaran, X. Zhang, Y. Ma, A. Svane, and O. Eriksson, “Lattice dynamics and elastic properties of the 4f electron system: CeN,” Phys. Rev. B 84, 205135 (2011).10.1103/physrevb.84.205135
|
[58] |
M. B. Nielsen, D. Ceresoli, J.-E. Jørgensen, C. Prescher, V. B. Prakapenka, and M. Bremholm, “Experimental evidence for pressure-induced first order transition in cerium nitride from B1 to B10 structure type,” J. Appl. Phys. 121, 025903 (2017).10.1063/1.4973575
|
[59] |
M. Zhang, H. Yan, Q. Wei, and H. Wang, “Exploration on pressure-induced phase transition of cerium mononitride from first-principles calculations,” Appl. Phys. Lett. 102, 231901 (2013).10.1063/1.4809921
|
[60] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
|
[61] |
J. F. l. G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
|
[62] |
K. Burke, J. P. Perdew, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/PhysRevLett.77.3865
|
[63] |
A. M. Hao and J. Bai, “First-principles calculations of electronic and magnetic properties of CeN: The LDA + U method,” Chin. Phys. B 22, 107102 (2013).10.1088/1674-1056/22/10/107102
|
[64] |
Y. G. Zhang, G. B. Zhang, and Y. X. Wang, “First-principles study of the electronic structure and optical properties of Ce-doped ZnO,” J. Appl. Phys. 109, 063510 (2011).10.1063/1.3561436
|
[65] |
T. Zacherle, A. Schriever, R. A. De Souza, and M. Martin, “Ab initio analysis of the defect structure of ceria,” Phys. Rev. B 87, 134104 (2013).10.1103/physrevb.87.134104
|
[66] |
C. W. M. Castleton, J. Kullgren, and K. Hermansson, “Tuning for electron localization and structure at oxygen vacancies in ceria,” J. Chem. Phys. 127, 244704 (2007).10.1063/1.2800015
|
[67] |
D. J. G. Kresse, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
|
[68] |
A. V. Krukau, G. E. Scuseria, J. P. Perdew, and A. Savin, “Hybrid functionals with local range separation,” J. Chem. Phys. 129, 124103 (2008).10.1063/1.2978377
|
[69] |
A. Togo, L. Chaput, and I. Tanaka, “Distributions of phonon lifetimes in Brillouin zones,” Phys. Rev. B 91, 094306 (2015).10.1103/physrevb.91.094306
|
[70] |
M. J. K. a. C. Dickinson, “Evaluation of the simplied calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43–50 (1968).
|
[71] |
M. Parrinello and A. Rahman, “Crystal structure and pair potentials: A molecular-dynamics study,” Phys. Rev. Lett. 45, 1196–1199 (1980).10.1103/physrevlett.45.1196
|
[72] |
V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski, “Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets,” J. Phys. Chem. A 115, 5461–5466 (2011).10.1021/jp202489s
|
[73] |
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14, 2717–2744 (2002).10.1088/0953-8984/14/11/301
|
[74] |
F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
|
[75] |
S. Ma, F. Peng, S. Zhu, S. Li, and T. Gao, “Novel phase of AlN4 as a possible superhard material,” J. Phys. Chem. C 122, 22660–22666 (2018).10.1021/acs.jpcc.8b07385
|
[76] |
Z. Raza, C. J. Pickard, C. Pinilla, and A. M. Saitta, “High energy density mixed polymeric phase from carbon monoxide and nitrogen,” Phys. Rev. Lett. 111, 235501 (2013).10.1103/physrevlett.111.235501
|
[77] |
Z. Zhao, K. Bao, F. Tian, D. Duan, B. Liu, and T. Cui, “Phase diagram, mechanical properties, and electronic structure of Nb-N compounds under pressure,” Phys. Chem. Chem. Phys. 17, 22837–22845 (2015).10.1039/c5cp02381e
|
[78] |
Y. Zhang, L. Wu, B. Wan, Y. Lin, Q. Hu, Y. Zhao, R. Gao, Z. Li, J. Zhang, and H. Gou, “Diverse ruthenium nitrides stabilized under pressure: A theoretical prediction,” Sci. Rep. 6, 33506 (2016).10.1038/srep33506
|
[79] |
X. Du, Y. Yao, J. Wang, Q. Yang, and G. Yang, “IrN4 and IrN7 as potential high-energy-density materials,” J. Chem. Phys. 154, 054706 (2021).10.1063/5.0036832
|
![]() |
![]() |