Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Wang Yuanyuan, Li Zhihui, Niu Shifeng, Yi Wencai, Liu Shuang, Yao Zhen, Liu Bingbing. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401. doi: 10.1063/5.0136443
Citation: Wang Yuanyuan, Li Zhihui, Niu Shifeng, Yi Wencai, Liu Shuang, Yao Zhen, Liu Bingbing. Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure[J]. Matter and Radiation at Extremes, 2023, 8(3): 038401. doi: 10.1063/5.0136443

Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure

doi: 10.1063/5.0136443
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: yiwc@qfnu.edu.cn, liu_shuang@jlu.edu.cn, yaozhen@jlu.edu.cn, and liubb@jlu.edu.cn
  • Received Date: 2022-11-26
  • Accepted Date: 2023-03-16
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • Synthesis pressure and structural stability are two crucial factors for highly energetic materials, and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions. Here, we systematically explore Ce–N compounds through first-principles calculations, demonstrating that the cerium atom can weaken the strength of the N≡N bond and that a rich variety of cerium polynitrides can be formed under moderate pressure. Significantly, P1̄-CeN6 possesses the lowest synthesis pressure of 32 GPa among layered metal polynitrides owing to the strong ligand effect of cerium. The layered structure of P1̄-CeN6 proposed here consists of novel N14 ring. To clarify the formation mechanism of P1̄-CeN6, the reaction path Ce + 3N2trans-CeN6P1̄-CeN6 is proposed. In addition, P1̄-CeN6 possesses high hardness (20.73 GPa) and can be quenched to ambient conditions. Charge transfer between cerium atoms and N14 rings plays a crucial role in structural stability. Furthermore, the volumetric energy density (11.20 kJ/cm3) of P1̄-CeN6 is much larger than that of TNT (7.05 kJ/cm3), and its detonation pressure (128.95 GPa) and detonation velocity (13.60 km/s) are respectively about seven times and twice those of TNT, and it is therefore a promising high-energy-density material.
  • loading
  • [1]
    X. Q. Chen, C. L. Fu, and R. Podloucky, “Bonding and strength of solid nitrogen in the cubic gauche (cg-N) structure,” Phys. Rev. B 77, 064103 (2008).10.1103/physrevb.77.064103
    [2]
    M. Sun, Y. Yin, and Z. Pang, “Predicted new structures of polymeric nitrogen under 100–600 GPa,” Comput. Mater. Sci. 98, 399–404 (2015).10.1016/j.commatsci.2014.11.040
    [3]
    X. Wang, F. Tian, L. Wang, X. Jin, D. Duan, X. Huang, B. Liu, and T. Cui, “Predicted novel metallic metastable phases of polymeric nitrogen at high pressures,” New J. Phys. 15, 013010 (2013).10.1088/1367-2630/15/1/013010
    [4]
    X. Wang, F. Tian, L. Wang, T. Cui, B. Liu, and G. Zou, “Structural stability of polymeric nitrogen: A first-principles investigation,” J. Chem. Phys. 132, 024502 (2010).10.1063/1.3290954
    [5]
    S. V. Bondarchuk and B. F. Minaev, “Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties,” Comput. Mater. Sci. 133, 122–129 (2017).10.1016/j.commatsci.2017.03.007
    [6]
    F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, “Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation,” Phys. Rev. B 72, 214108 (2005).10.1103/physrevb.72.214108
    [7]
    Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, “Novel high pressure structures of polymeric nitrogen,” Phys. Rev. Lett. 102, 065501 (2009).10.1103/PhysRevLett.102.065501
    [8]
    X. L. Wang, Z. He, Y. M. Ma, T. Cui, Z. M. Liu, B. B. Liu, J. F. Li, and G. T. Zou, “Prediction of a new layered phase of nitrogen from first-principles simulations,” J. Phys.: Condens. Matter 19, 425226 (2007).10.1088/0953-8984/19/42/425226
    [9]
    J. Kotakoski and K. Albe, “First-principles calculations on solid nitrogen: A comparative study of high-pressure phases,” Phys. Rev. B 77, 144109 (2008).10.1103/physrevb.77.144109
    [10]
    W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, “Prediction of new phases of nitrogen at high pressure from first-principles simulations,” Phys. Rev. Lett. 93, 125501 (2004).10.1103/physrevlett.93.125501
    [11]
    X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv, T. Cui, J. Li, L. Chen, C. J. Pickard, and Y. Ma, “Cagelike diamondoid nitrogen at high pressures,” Phys. Rev. Lett. 109, 175502 (2012).10.1103/physrevlett.109.175502
    [12]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
    [13]
    D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502
    [14]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/PhysRevLett.122.066001
    [15]
    D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
    [16]
    D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
    [17]
    Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S. Q. Jiang, E. Greenberg, S. Chariton, V. B. Prakapenka, A. R. Oganov, and A. F. Goncharov, “Stabilization of hexazine rings in potassium polynitride at high pressure,” Nat. Chem. 14, 794–800 (2022).10.1038/s41557-022-00925-0
    [18]
    D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, “Synthesis of magnesium-nitrogen salts of polynitrogen anions,” Nat. Commun. 10, 4515 (2019).10.1038/s41467-019-12530-w
    [19]
    B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735–741 (2016).10.1021/acs.chemmater.6b04538
    [20]
    D. Laniel, A. A. Aslandukova, A. N. Aslandukov, T. Fedotenko, S. Chariton, K. Glazyrin, V. B. Prakapenka, L. S. Dubrovinsky, and N. Dubrovinskaia, “High-pressure synthesis of the beta-Zn3N2 nitride and the alpha-ZnN4 and beta-ZnN4 polynitrogen compounds,” Inorg. Chem. 60, 14594–14601 (2021).10.1021/acs.inorgchem.1c01532
    [21]
    M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnadi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, “High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
    [22]
    M. Zhang, H. Yan, and Q. Wei, “Une xpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M = Ti, Zr, and Hf),” J. Alloys Compd. 774, 918–925 (2019).10.1016/j.jallcom.2018.09.337
    [23]
    J. Zhang, X. Li, X. Dong, H. Dong, A. R. Oganov, and J. M. McMahon, “Theoretical study of the crystal structure, stability, and properties of phases in the V-N system,” Phys. Rev. B 104, 134111 (2021).10.1103/physrevb.104.134111
    [24]
    X. Wang, J. Li, J. Botana, M. Zhang, H. Zhu, L. Chen, L. Liu, T. Cui, and M. Miao, “Polymerization of nitrogen in lithium azide,” J. Chem. Phys. 139, 164710 (2013).10.1063/1.4826636
    [25]
    X. Wang, J. Li, H. Zhu, L. Chen, and H. Lin, “Polymerization of nitrogen in cesium azide under modest pressure,” J. Chem. Phys. 141, 044717 (2014).10.1063/1.4891367
    [26]
    M. Zhang, K. Yin, X. Zhang, H. Wang, Q. Li, and Z. Wu, “Structural and electronic properties of sodium azide at high pressure: A first principles study,” Solid State Commun. 161, 13–18 (2013).10.1016/j.ssc.2013.01.032
    [27]
    J. Lin, F. Wang, Q. Rui, J. Li, Q. Wang, and X. Wang, “A novel square planar N42− ring with aromaticity in BeN4,” Matter Radiat. Extremes 7, 038401 (2022).10.1063/5.0084802
    [28]
    S. Niu, D. Xu, H. Li, Z. Yao, S. Liu, C. Zhai, K. Hu, X. Shi, P. Wang, and B. Liu, “Pressure-stabilized polymerization of nitrogen in manganese nitrides at ambient and high pressures,” Phys. Chem. Chem. Phys. 24, 5738 (2022).10.1039/d1cp03068j
    [29]
    K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao, Q. Wu, and J. Sun, “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
    [30]
    J. Yuan, K. Xia, J. Wu, and J. Sun, “High-energy-density pentazolate salts: CaN10 and BaN10,” Sci. China-Phys. Mech. Astron. 64, 218211 (2020).10.1007/s11433-020-1595-2
    [31]
    W. Lu, K. Hao, S. Liu, J. Lv, M. Zhou, and P. Gao, “Pressure-stabilized high-energy-density material YN10,” J. Phys.: Condens. Matter 34, 135403 (2022).10.1088/1361-648x/ac48c0
    [32]
    K. Xia, J. Yuan, X. Zheng, C. Liu, H. Gao, Q. Wu, and J. Sun, “Predictions on high-power trivalent metal pentazolate salts,” J. Phys. Chem. Lett. 10, 6166–6173 (2019).10.1021/acs.jpclett.9b02383
    [33]
    B. Wang, R. Larhlimi, H. Valencia, F. Guégan, and G. Frapper, “Prediction of novel tin nitride SnxNy phases under pressure,” J. Phys. Chem. C 124, 8080–8093 (2020).10.1021/acs.jpcc.9b11404
    [34]
    W. Yi, L. Zhao, X. Liu, X. Chen, Y. Zheng, and M. Miao, “Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds,” Mater. Des. 193, 108820 (2020).10.1016/j.matdes.2020.108820
    [35]
    J. Zhang, Z. Zeng, H. Q. Lin, and Y. L. Li, “Pressure-induced planar N6 rings in potassium azide,” Sci. Rep. 4, 4358 (2014).10.1038/srep04358
    [36]
    K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H. T. Wang, and D. Xing, “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817–824 (2018).10.1016/j.scib.2018.05.027
    [37]
    Z. Liu, D. Li, Q. Zhuang, F. Tian, D. Duan, F. Li, and T. Cui, “Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions,” Commun. Chem. 3, 42 (2020).10.1038/s42004-020-0286-1
    [38]
    L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, “Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species,” Chem. Mater. 30, 8476–8485 (2018).10.1021/acs.chemmater.8b02972
    [39]
    X. Zhang, X. Xie, H. Dong, X. Zhang, F. Wu, Z. Mu, and M. Wen, “Pressure-induced high-energy-density BeN4 materials with nitrogen chains: First-principles study,” J. Phys. Chem. C 125, 25376–25382 (2021).10.1021/acs.jpcc.1c07500
    [40]
    L. Wu, P. Zhou, Y. Li, B. Wan, S. Sun, J. Xu, J. Sun, B. Liao, and H. Gou, “Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains,” J. Mater. Sci. 56, 3814–3826 (2020).10.1007/s10853-020-05512-7
    [41]
    Y. Guo, S. Wei, Z. Liu, H. Sun, G. Yin, S. Chen, Z. Yu, Q. Chang, and Y. Sun, “Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN6 and ScN7 under modest pressure,” New J. Phys. 24, 083015 (2022).10.1088/1367-2630/ac8443
    [42]
    J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
    [43]
    S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure,” J. Phys. Chem. C 121, 11037–11046 (2017).10.1021/acs.jpcc.7b00474
    [44]
    B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623–7636 (2018).10.1021/acs.chemmater.8b02907
    [45]
    J. Lin, D. Peng, Q. Wang, J. Li, H. Zhu, and X. Wang, “Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions,” Phys. Chem. Chem. Phys. 23, 6863–6870 (2021).10.1039/d0cp05402j
    [46]
    S. Liu, R. Liu, H. Li, Z. Yao, X. Shi, P. Wang, and B. Liu, “Cobalt-nitrogen compounds at high pressure,” Inorg. Chem. 60, 14022–14030 (2021).10.1021/acs.inorgchem.1c01304
    [47]
    S. Niu, Z. Li, H. Li, X. Shi, Z. Yao, and B. Liu, “New cadmium-nitrogen compounds at high pressures,” Inorg. Chem. 60, 6772–6781 (2021).10.1021/acs.inorgchem.1c00601
    [48]
    B. A. Steele and I. I. Oleynik, “Novel potassium polynitrides at high pressures,” J. Phys. Chem. A 121, 8955–8961 (2017).10.1021/acs.jpca.7b08974
    [49]
    S. Wei, D. Li, Z. Liu, W. Wang, F. Tian, K. Bao, D. Duan, B. Liu, and T. Cui, “A novel polymerization of nitrogen in beryllium tetranitride at high pressure,” J. Phys. Chem. C 121, 9766–9772 (2017).10.1021/acs.jpcc.7b02592
    [50]
    J. Hou, X. J. Weng, A. R. Oganov, X. Shao, G. Gao, X. Dong, H. T. Wang, Y. Tian, and X. F. Zhou, “Helium-nitrogen mixtures at high pressure,” Phys. Rev. B 103, L060102 (2021).10.1103/physrevb.103.l060102
    [51]
    Z. Liu, D. Li, Y. Liu, T. Cui, F. Tian, and D. Duan, “Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides,” Phys. Chem. Chem. Phys. 21, 12029 (2019).10.1039/c9cp01723b
    [52]
    L. Liu, D. Wang, S. Zhang, and H. Zhang, “Pressure-stabilized GdN6 with an armchair–antiarmchair structure as a high energy density material,” J. Mater. Chem. A 9, 16751–16758 (2021).10.1039/d1ta03381f
    [53]
    H. Cai, X. Wang, Y. Zheng, X. Jiang, J. Zeng, Y. Feng, and K. Chen, “Prediction of erbium–nitrogen compounds as high-performance high-energy-density materials,” J. Phys.: Condens. Matter 35, 085701 (2023).10.1088/1361-648x/aca861
    [54]
    X. Hu, Y. Sun, S. Guo, J. Sun, Y. Fu, S. Chen, S. Zhang, and J. Zhu, “Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions,” Appl. Catal., B 280, 119419 (2021).10.1016/j.apcatb.2020.119419
    [55]
    J. Qi, S. Zhou, K. Xie, and S. Lin, “Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia,” J. Energy Chem. 60, 249–258 (2021).10.1016/j.jechem.2021.01.016
    [56]
    B. Xu, L. Xia, F. Zhou, R. Zhao, H. Chen, T. Wang, Q. Zhou, Q. Liu, G. Cui, X. Xiong, F. Gong, and X. Sun, “Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies,” ACS Sustainable Chem. Eng. 7, 2889–2893 (2019).10.1021/acssuschemeng.8b05007
    [57]
    V. Kanchana, G. Vaitheeswaran, X. Zhang, Y. Ma, A. Svane, and O. Eriksson, “Lattice dynamics and elastic properties of the 4f electron system: CeN,” Phys. Rev. B 84, 205135 (2011).10.1103/physrevb.84.205135
    [58]
    M. B. Nielsen, D. Ceresoli, J.-E. Jørgensen, C. Prescher, V. B. Prakapenka, and M. Bremholm, “Experimental evidence for pressure-induced first order transition in cerium nitride from B1 to B10 structure type,” J. Appl. Phys. 121, 025903 (2017).10.1063/1.4973575
    [59]
    M. Zhang, H. Yan, Q. Wei, and H. Wang, “Exploration on pressure-induced phase transition of cerium mononitride from first-principles calculations,” Appl. Phys. Lett. 102, 231901 (2013).10.1063/1.4809921
    [60]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
    [61]
    J. F. l. G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [62]
    K. Burke, J. P. Perdew, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/PhysRevLett.77.3865
    [63]
    A. M. Hao and J. Bai, “First-principles calculations of electronic and magnetic properties of CeN: The LDA + U method,” Chin. Phys. B 22, 107102 (2013).10.1088/1674-1056/22/10/107102
    [64]
    Y. G. Zhang, G. B. Zhang, and Y. X. Wang, “First-principles study of the electronic structure and optical properties of Ce-doped ZnO,” J. Appl. Phys. 109, 063510 (2011).10.1063/1.3561436
    [65]
    T. Zacherle, A. Schriever, R. A. De Souza, and M. Martin, “Ab initio analysis of the defect structure of ceria,” Phys. Rev. B 87, 134104 (2013).10.1103/physrevb.87.134104
    [66]
    C. W. M. Castleton, J. Kullgren, and K. Hermansson, “Tuning for electron localization and structure at oxygen vacancies in ceria,” J. Chem. Phys. 127, 244704 (2007).10.1063/1.2800015
    [67]
    D. J. G. Kresse, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
    [68]
    A. V. Krukau, G. E. Scuseria, J. P. Perdew, and A. Savin, “Hybrid functionals with local range separation,” J. Chem. Phys. 129, 124103 (2008).10.1063/1.2978377
    [69]
    A. Togo, L. Chaput, and I. Tanaka, “Distributions of phonon lifetimes in Brillouin zones,” Phys. Rev. B 91, 094306 (2015).10.1103/physrevb.91.094306
    [70]
    M. J. K. a. C. Dickinson, “Evaluation of the simplied calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43–50 (1968).
    [71]
    M. Parrinello and A. Rahman, “Crystal structure and pair potentials: A molecular-dynamics study,” Phys. Rev. Lett. 45, 1196–1199 (1980).10.1103/physrevlett.45.1196
    [72]
    V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski, “Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets,” J. Phys. Chem. A 115, 5461–5466 (2011).10.1021/jp202489s
    [73]
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14, 2717–2744 (2002).10.1088/0953-8984/14/11/301
    [74]
    F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
    [75]
    S. Ma, F. Peng, S. Zhu, S. Li, and T. Gao, “Novel phase of AlN4 as a possible superhard material,” J. Phys. Chem. C 122, 22660–22666 (2018).10.1021/acs.jpcc.8b07385
    [76]
    Z. Raza, C. J. Pickard, C. Pinilla, and A. M. Saitta, “High energy density mixed polymeric phase from carbon monoxide and nitrogen,” Phys. Rev. Lett. 111, 235501 (2013).10.1103/physrevlett.111.235501
    [77]
    Z. Zhao, K. Bao, F. Tian, D. Duan, B. Liu, and T. Cui, “Phase diagram, mechanical properties, and electronic structure of Nb-N compounds under pressure,” Phys. Chem. Chem. Phys. 17, 22837–22845 (2015).10.1039/c5cp02381e
    [78]
    Y. Zhang, L. Wu, B. Wan, Y. Lin, Q. Hu, Y. Zhao, R. Gao, Z. Li, J. Zhang, and H. Gou, “Diverse ruthenium nitrides stabilized under pressure: A theoretical prediction,” Sci. Rep. 6, 33506 (2016).10.1038/srep33506
    [79]
    X. Du, Y. Yao, J. Wang, Q. Yang, and G. Yang, “IrN4 and IrN7 as potential high-energy-density materials,” J. Chem. Phys. 154, 054706 (2021).10.1063/5.0036832
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (80) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return