Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Jiang K., Huang T. W., Wu C. N., Yu M. Y., Zhang H., Wu S. Z., Zhuo H. B., Pukhov A., Zhou C. T., Ruan S. C.. Nonlinear branched flow of intense laser light in randomly uneven media[J]. Matter and Radiation at Extremes, 2023, 8(2): 024402. doi: 10.1063/5.0133707
Citation: Jiang K., Huang T. W., Wu C. N., Yu M. Y., Zhang H., Wu S. Z., Zhuo H. B., Pukhov A., Zhou C. T., Ruan S. C.. Nonlinear branched flow of intense laser light in randomly uneven media[J]. Matter and Radiation at Extremes, 2023, 8(2): 024402. doi: 10.1063/5.0133707

Nonlinear branched flow of intense laser light in randomly uneven media

doi: 10.1063/5.0133707
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: taiwu.huang@sztu.edu.cn and zcangtao@sztu.edu.cn
  • Received Date: 2022-11-05
  • Accepted Date: 2023-01-22
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • Branched flow is an interesting phenomenon that can occur in diverse systems. It is usually linear in the sense that the flow does not alter the properties of the medium. Branched flow of light on thin films has recently been discovered. It is therefore of interest to know whether nonlinear light branching can also occur. Here, using particle-in-cell simulations, we find that in the case of an intense laser propagating through a randomly uneven medium, cascading local photoionization by the incident laser, together with the response of freed electrons in the strong laser fields, triggers space–time-dependent optical unevenness. The resulting branching pattern depends dramatically on the laser intensity. That is, the branching here is distinct from the existing linear ones. The observed branching properties agree well with theoretical analyses based on the Helmholtz equation. Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    K. Jiang: Conceptualization (equal); Data curation (lead); Formal analysis (equal); Investigation (lead); Methodology (lead); Validation (equal); Visualization (lead); Writing – original draft (lead); Writing – review & editing (equal). T. W. Huang: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Project administration (equal); Supervision (equal); Validation (equal); Writing – original draft (supporting); Writing – review & editing (equal). C. N. Wu: Formal analysis (supporting); Visualization (supporting). M. Y. Yu: Investigation (supporting); Writing – original draft (supporting); Writing – review & editing (equal). H. Zhang: Data curation (supporting); Formal analysis (supporting); Resources (equal); Software (equal); Validation (supporting). S. Z. Wu: Data curation (supporting); Resources (supporting); Software (supporting); Validation (supporting). H. B. Zhuo: Formal analysis (supporting); Investigation (supporting); Validation (supporting). A. Pukhov: Formal analysis (supporting); Investigation (supporting); Resources (supporting); Supervision (supporting); Validation (supporting). C. T. Zhou: Data curation (supporting); Formal analysis (supporting); Funding acquisition (equal); Investigation (supporting); Project administration (equal); Resources (equal); Software (equal); Supervision (equal); Validation (supporting). S. C. Ruan: Resources (supporting); Supervision (supporting).
    K.J. and T.W.H. developed the theoretical work. K.J. conducted the simulations. K.J., T.W.H., and C.N.W. analyzed the data and produced the figures. H.Z., S.Z.W., H.B.Z., and A.P. helped review and interpret the data. K.J., T.W.H., and M.Y.Y. wrote the article. T.W.H., C.T.Z., and S.C.R. supervised the work. All authors have reviewed, discussed, and agreed to the complete article.
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
    Our PIC simulations are conducted using the epoch code.29 For the simulations of the Gaussian laser pulse, “simple_laser” and “simple_outflow” longitudinal boundaries and open lateral boundaries are used. Periodic lateral boundaries are used for the reference simulations of plane waves. Unless otherwise stated, “field_ionization” is turned on, which accounts for different modes of photoionization, including multiphoton ionization, tunneling ionization, and barrier-suppression ionization. In 2D (3D) simulations, the simulation box is −5 µm < x < 215 µm, −55 µm < y (and z in 3D) < 55 µm, with 2200 × 1100 (1100 × 550 × 550) grid cells and 30 (2) macroparticles per cell for each species. Note that more macroelectrons will be produced by photoionization. For the interacting medium, we choose a weakly pre-ionized SiO2 plasma (Si2+ and O+) with uneven density distribution, which is located in 0 µm < x < 215 µm, −55 µm < y (and z in 3D) < 55 µm. The average densities of Si2+, O+, and electrons are 0.02nc, 0.04nc, and 0.08nc, respectively, where nc ∼ 1.1 × 1021 cm3/λ02 is the critical density. The uneven density distribution is generated by assigning random points at a minimum separation of 2 µm within the plasma area with values taken from a set satisfying a Gaussian random distribution between zero and three times the average densities. The full plasma density map with C2 continuity is obtained by applying biharmonic spline interpolation based on these random points. The overall average densities and a coefficient of density variation of 30% are used as constraint conditions. The obtained density unevenness is of an isotropic correlation length lc = 4.8 µm, defined as the shortest distance in which the value of the corresponding autocorrelation function (ACF) drops to 10% of the zero-shift value.28 The ACF is calculated as ACF(i,j)=m=0M1n=0N1ne(m,n)ne(m+i,n+j), where ne is the initial electron density, M and N are the numbers of grid cells occupied by the electrons in the longitudinal and lateral directions, respectively, and 0 ≤ i < 2M − 1 and 0 ≤ j < 2 N − 1. The input laser pulse is simulated as a Gaussian beam with circular polarization incident normally from the left boundary. Its central wavelength λ0 = 1.06 µm, peak intensity I0 = 1014–1020 W/cm2, and FWHM spot size r0 = 16.65 µm. The laser pulse duration is 1.5 ps, with a flat-top time profile for simplicity. The reference simulations of plane waves use identical parameters.
  • loading
  • [1]
    E. J. Heller, R. Fleischmann, and T. Kramer, “Branched flow,” Phys. Today 74(12), 44 (2021).10.1063/pt.3.4902
    [2]
    M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R. Fleischmann, E. J. Heller, K. D. Maranowski, and A. C. Gossard, “Coherent branched flow in a two-dimensional electron gas,” Nature 410, 183 (2001).10.1038/35065553
    [3]
    K. E. Aidala, R. E. Parrott, T. Kramer, E. J. Heller, R. M. Westervelt, M. P. Hanson, and A. C. Gossard, “Imaging magnetic focusing of coherent electron waves,” Nat. Phys. 3, 464 (2007).10.1038/nphys628
    [4]
    M. P. Jura, M. A. Topinka, L. Urban, A. Yazdani, H. Shtrikman, L. N. Pfeiffer, K. W. West, and D. Goldhaber-Gordon, “Unexpected features of branched flow through high-mobility two-dimensional electron gases,” Nat. Phys. 3, 841 (2007).10.1038/nphys756
    [5]
    D. Maryenko, F. Ospald, K. von Klitzing, J. H. Smet, J. J. Metzger, R. Fleischmann, T. Geisel, and V. Umansky, “How branching can change the conductance of ballistic semiconductor devices,” Phys. Rev. B 85, 195329 (2012).10.1103/physrevb.85.195329
    [6]
    B. Liu and E. J. Heller, “Stability of branched flow from a quantum point contact,” Phys. Rev. Lett. 111, 236804 (2013).10.1103/physrevlett.111.236804
    [7]
    M. V. Berry, “Tsunami asymptotics,” New J. Phys. 7, 129 (2005).10.1088/1367-2630/7/1/129
    [8]
    M. V. Berry, “Focused tsunami waves,” Proc. R. Soc. A 463, 3055 (2007).10.1098/rspa.2007.0051
    [9]
    U. Kânoğlu, V. V. Titov, B. Aydin, C. Moore, T. S. Stefanakis, H. Zhou, M. Spillane, and C. E. Synolakis, “Focusing of long waves with finite crest over constant depth,” Proc. R. Soc. A 469, 20130015 (2013).10.1098/rspa.2013.0015
    [10]
    H. Degueldre, J. J. Metzger, T. Geisel, and R. Fleischmann, “Random focusing of tsunami waves,” Nat. Phys. 12, 259 (2016).10.1038/nphys3557
    [11]
    G. Green and R. Fleischmann, “Branched flow and caustics in nonlinear waves,” New J. Phys. 21, 083020 (2019).10.1088/1367-2630/ab319b
    [12]
    J. M. Cordes, A. Pidwerbetsky, and R. V. E. Lovelace, “Refractive and diffractive scattering in the interstellar medium,” Astrophys. J. 310, 737 (1986).10.1086/164728
    [13]
    [14]
    D. R. Stinebring, “Scintillation arcs: Probing turbulence and structure in the ISM,” Chin. J. Astron. Astrophys. 6, 204 (2006).10.1088/1009-9271/6/s2/38
    [15]
    S. Barkhofen, J. J. Metzger, R. Fleischmann, U. Kuhl, and H.-J. Stöckmann, “Experimental observation of a fundamental length scale of waves in random media,” Phys. Rev. Lett. 111, 183902 (2013).10.1103/physrevlett.111.183902
    [16]
    N. J. Derr, D. C. Fronk, C. A. Weber, A. Mahadevan, C. H. Rycroft, and L. Mahadevan, “Flow-driven branching in a frangible porous medium,” Phys. Rev. Lett. 125, 158002 (2020).10.1103/physrevlett.125.158002
    [17]
    A. Patsyk, U. Sivan, M. Segev, and M. A. Bandres, “Observation of branched flow of light,” Nature 583, 60 (2020).10.1038/s41586-020-2376-8
    [18]
    A. Patsyk, Y. Sharabi, U. Sivan, and M. Segev, “Incoherent branched flow of light,” Phys. Rev. X 12, 021007 (2022).10.1103/physrevx.12.021007
    [19]
    A. Brandstötter, A. Girschik, P. Ambichl, and S. Rotter, “Shaping the branched flow of light through disordered media,” Proc. Natl. Acad. Sci. U. S. A. 116, 13260 (2019).10.1073/pnas.1905217116
    [20]
    M. Mattheakis and G. P. Tsironis, “Extreme waves and branching flows in optical media,” in Quodons in Mica (Springer, Cham, 2015), p. 425.
    [21]
    L. Kaplan, “Statistics of branched flow in a weak correlated random potential,” Phys. Rev. Lett. 89, 184103 (2002).10.1103/physrevlett.89.184103
    [22]
    J. J. Metzger, R. Fleischmann, and T. Geisel, “Universal statistics of branched flows,” Phys. Rev. Lett. 105, 020601 (2010).10.1103/PhysRevLett.105.020601
    [23]
    J. J. Metzger, R. Fleischmann, and T. Geisel, “Statistics of extreme waves in random media,” Phys. Rev. Lett. 112, 203903 (2014).10.1103/physrevlett.112.203903
    [24]
    S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, “First-order transition in the breakdown of disordered media,” Phys. Rev. Lett. 78, 1408 (1997).10.1103/physrevlett.78.1408
    [25]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447 (1985).10.1016/0030-4018(85)90151-8
    [26]
    P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (World Scientific, 2005).
    [27]
    S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).10.1103/physrevlett.63.2212
    [28]
    E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Sci. 123, 133 (2002).10.1016/s0924-0136(02)00060-2
    [29]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [30]
    K. Nagai, C. S. A. Musgrave, and W. Nazarov, “A review of low density porous materials used in laser plasma experiments,” Phys. Plasmas 25, 030501 (2018).10.1063/1.5009689
    [31]
    J. L. Milovich, O. S. Jones, R. L. Berger, G. E. Kemp, J. S. Oakdale, J. Biener, M. A. Belyaev, D. A. Mariscal, S. Langer, P. A. Sterne, S. Sepke, and M. Stadermann, “Simulation studies of the interaction of laser radiation with additively manufactured foams,” Plasma Phys. Controlled Fusion 63, 055009 (2021).10.1088/1361-6587/abe353
    [32]
    B. R. Lee, P. K. Singh, Y. J. Rhee, and C. H. Nam, “Spatiotemporal characteristics of high-density gas jet and absolute determination of size and density of gas clusters,” Sci. Rep. 10, 12973 (2020).10.1038/s41598-020-69824-z
    [33]
    Q. Jia, K. Qu, and N. J. Fisch, “Optical phase conjugation in backward Raman amplification,” Opt. Lett. 45, 5254 (2020).10.1364/ol.397321
    [34]
    P. Shukla, N. N. Rao, M. Y. Yu, and N. L. Tsintsadze, “Relativistic nonlinear effects in plasmas,” Phys. Rep. 138, 1 (1986).10.1016/0370-1573(86)90157-2
    [35]
    G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, “Self-focusing of short intense pulses in plasmas,” Phys. Fluids 30, 526 (1987).10.1063/1.866349
    [36]
    A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, V. V. Korobkin, A. M. Prokhorov, J. C. Solem, T. S. Luk, K. Boyer, and C. K. Rhodes, “Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas,” Phys. Rev. A 45, 5830 (1992).10.1103/physreva.45.5830
    [37]
    A. B. Borisov, O. B. Shiryaev, A. Mcpherson, K. Boyer, and C. K. Rhodes, “Stability analysis of relativistic and charge-displacement self-channelling of intense laser pulses in underdense plasmas,” Plasma Phys. Controlled Fusion 37, 569 (1995).10.1088/0741-3335/37/5/008
    [38]
    A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975 (1996).10.1103/physrevlett.76.3975
    [39]
    A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47 (2007).10.1016/j.physrep.2006.12.005
    [40]
    T. W. Huang, C. T. Zhou, A. P. L. Robinson, B. Qiao, H. Zhang, S. Z. Wu, H. B. Zhuo, P. A. Norreys, and X. T. He, “Mitigating the relativistic laser beam filamentation via an elliptical beam profile,” Phys. Rev. E 92, 053106 (2015).10.1103/physreve.92.053106
    [41]
    A. Schmitt-Sody, H. G. Kurz, L. Bergé, S. Skupin, and P. Polynkin, “Picosecond laser filamentation in air,” New J. Phys. 18, 093005 (2016).10.1088/1367-2630/18/9/093005
    [42]
    M. Grech, G. Riazuelo, D. Pesme, S. Weber, and V. T. Tikhonchuk, “Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray,” Phys. Rev. Lett. 102, 155001 (2009).10.1103/physrevlett.102.155001
    [43]
    D. Turnbull, J. Katz, D. E. Hinkel, P. Michel, T. Chapman, L. Divol, E. Kur, S. MacLaren, A. L. Milder, M. Rosen, A. Shvydky, G. B. Zimmerman, and D. H. Froula, “Beam spray thresholds in ICF-relevant plasmas,” Phys. Rev. Lett. 129, 025001 (2022).10.1103/PhysRevLett.129.025001
    [44]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [45]
    S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97, 25 (1993).10.1016/0030-4018(93)90611-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return