Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Wu X. Z., Shou Y. R., Guo Z. B., Lu H. G., Liu J. X., Wu D., Gong Z., Yan X. Q.. Effects of electron heating and surface rippling on Rayleigh–Taylor instability in radiation pressure acceleration[J]. Matter and Radiation at Extremes, 2023, 8(3): 036902. doi: 10.1063/5.0130513
Citation: Wu X. Z., Shou Y. R., Guo Z. B., Lu H. G., Liu J. X., Wu D., Gong Z., Yan X. Q.. Effects of electron heating and surface rippling on Rayleigh–Taylor instability in radiation pressure acceleration[J]. Matter and Radiation at Extremes, 2023, 8(3): 036902. doi: 10.1063/5.0130513

Effects of electron heating and surface rippling on Rayleigh–Taylor instability in radiation pressure acceleration

doi: 10.1063/5.0130513
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: shou@ibs.re.kr; zbguo@pku.edu.cn; and x.yan@pku.edu.cn
  • Received Date: 2022-10-12
  • Accepted Date: 2023-03-21
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability. Apart from laser and target configurations, we find that electron heating and surface rippling, effects inherent to the interaction process, have an important role in instability evolution and growth. By employing a simple analytical model and two-dimensional particle-in-cell simulations, we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes, but it has little influence on the growth of large-scale modes, which thus become dominant. With the growth of surface ripples, a mechanism that can significantly influence the growth of these large-scale modes is found. The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force, directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth. Our results show that when surface deformation becomes obvious, electron surface oscillation at 2ω0 (where ω0 is the laser frequency) is excited simultaneously, which can be seen as a signature of this mechanism.
  • loading
  • [1]
    T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92, 175003 (2004).10.1103/physrevlett.92.175003
    [2]
    A. Macchi, S. Veghini, and F. Pegoraro, “‘Light sail’ acceleration reexamined,” Phys. Rev. Lett. 103, 085003 (2009).10.1103/PhysRevLett.103.085003
    [3]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
    [4]
    A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [5]
    I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23, 070701 (2016).10.1063/1.4958654
    [6]
    M. Borghesi, D. H. Campbell, A. Schiavi, M. G. Haines, O. Willi, A. J. MacKinnon, P. Patel, L. A. Gizzi, M. Galimberti, R. J. Clarke et al., “Electric field detection in laser-plasma interaction experiments via the proton imaging technique,” Phys. Plasmas 9, 2214–2220 (2002).10.1063/1.1459457
    [7]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
    [8]
    M. Okamura, “Laser ion source for heavy ion inertial fusion,” Matter Radiat. Extremes 3, 61–66 (2018).10.1016/j.mre.2017.12.002
    [9]
    B. Martinez, S. N. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny et al., “Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams,” Matter Radiat. Extremes 7, 024401 (2022).10.1063/5.0060582
    [10]
    S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A 299, 240–247 (2002).10.1016/s0375-9601(02)00521-2
    [11]
    F. Dollar, C. Zulick, A. G. R. Thomas, V. Chvykov, J. Davis, G. Kalinchenko, T. Matsuoka, C. McGuffey, G. M. Petrov, L. Willingale, V. Yanovsky, A. Maksimchuk, and K. Krushelnick, “Finite spot effects on radiation pressure acceleration from intense high-contrast laser interactions with thin targets,” Phys. Rev. Lett. 108, 175005 (2012).10.1103/physrevlett.108.175005
    [12]
    F. Pegoraro and S. V. Bulanov, “Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse,” Phys. Rev. Lett. 99, 065002 (2007).10.1103/PhysRevLett.99.065002
    [13]
    O. Klimo, J. Psikal, J. Limpouch, and V. T. Tikhonchuk, “Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses,” Phys. Rev. Spec. Top.–Accel. Beams 11, 031301 (2008).10.1103/physrevstab.11.031301
    [14]
    A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys. 10, 013021 (2008).10.1088/1367-2630/10/1/013021
    [15]
    X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett. 100, 135003 (2008).10.1103/physrevlett.100.135003
    [16]
    X. Zhang, B. Shen, X. Li, Z. Jin, F. Wang, and M. Wen, “Efficient GeV ion generation by ultraintense circularly polarized laser pulse,” Phys. Plasmas 14, 123108 (2007).10.1063/1.2817087
    [17]
    C. A. J. Palmer, J. Schreiber, S. R. Nagel, N. P. Dover, C. Bellei, F. N. Beg, S. Bott, R. J. Clarke, A. E. Dangor, S. M. Hassan et al., “Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser,” Phys. Rev. Lett. 108, 225002 (2012).10.1103/physrevlett.108.225002
    [18]
    B. Eliasson, “Instability of a thin conducting foil accelerated by a finite wavelength intense laser,” New J. Phys. 17, 033026 (2015).10.1088/1367-2630/17/3/033026
    [19]
    A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, and A. Macchi, “Laser-driven Rayleigh-Taylor instability: Plasmonic effects and three-dimensional structures,” Phys. Rev. E 91, 013106 (2015).10.1103/physreve.91.013106
    [20]
    V. Khudik, S. A. Yi, C. Siemon, and G. Shvets, “The analytic model of a laser-accelerated plasma target and its stability,” Phys. Plasmas 21, 013110 (2014).10.1063/1.4863845
    [21]
    H.-G. J. Chou, A. Grassi, S. H. Glenzer, and F. Fiuza, “Radiation pressure acceleration of high-quality ion beams using ultrashort laser pulses,” Phys. Rev. Res. 4, L022056 (2022).10.1103/physrevresearch.4.l022056
    [22]
    B. Qiao, M. Zepf, M. Borghesi, and M. Geissler, “Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses,” Phys. Rev. Lett. 102, 145002 (2009).10.1103/physrevlett.102.145002
    [23]
    X. Q. Yan, H. C. Wu, Z. M. Sheng, J. E. Chen, and J. Meyer-ter-Vehn, “Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021 W/cm2,” Phys. Rev. Lett. 103, 135001 (2009).10.1103/physrevlett.103.135001
    [24]
    Y. Wan, I. A. Andriyash, W. Lu, W. B. Mori, and V. Malka, “Effects of the transverse instability and wavebreaking on the laser-driven thin foil acceleration,” Phys. Rev. Lett. 125, 104801 (2020).10.1103/physrevlett.125.104801
    [25]
    M. L. Zhou, X. Q. Yan, G. Mourou, J. A. Wheeler, J. H. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).10.1063/1.4947544
    [26]
    D. Wu, C. Y. Zheng, B. Qiao, C. T. Zhou, X. Q. Yan, M. Y. Yu, and X. T. He, “Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses,” Phys. Rev. E 90, 023101 (2014).10.1103/physreve.90.023101
    [27]
    M. Chen, A. Pukhov, T. P. Yu, and Z. M. Sheng, “Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse,” Phys. Rev. Lett. 103, 024801 (2009).10.1103/PhysRevLett.103.024801
    [28]
    T.-P. Yu, A. Pukhov, G. Shvets, and M. Chen, “Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil,” Phys. Rev. Lett. 105, 065002 (2010).10.1103/PhysRevLett.105.065002
    [29]
    N. Inogamov, “The role of Rayleigh-Taylor and Richtmyer-Meshkiv instabilities in astrophysics: An introduction,” Astrophys. Space Phys. Rev. 10, 1–335 (1999).
    [30]
    Y. O. El-Dib, G. M. Moatimid, and A. A. Mady, “A novelty to the nonlinear rotating Rayleigh–Taylor instability,” Pramana 93, 82 (2019).10.1007/s12043-019-1844-x
    [31]
    H. Terasaki, T. Sakaiya, K. Shigemori, K. Akimoto, H. Kato, Y. Hironaka, and T. Kondo, “In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation,” Matter Radiat. Extremes 6, 054403 (2021).10.1063/5.0029448
    [32]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
    [33]
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676–3682 (1985).10.1063/1.865099
    [34]
    E. Siminos, M. Grech, S. Skupin, T. Schlegel, and V. T. Tikhonchuk, “Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions,” Phys. Rev. E 86, 056404 (2012).10.1103/physreve.86.056404
    [35]
    B. S. Paradkar and S. Krishnagopal, “Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser,” Phys. Rev. E 93, 023203 (2016).10.1103/physreve.93.023203
    [36]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai et al., “SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [37]
    W. Wang, Y. Yin, T. Yu, H. Xu, D. Zou, and F. Shao, “Numerical investigation of the transverse instability on the radiation-pressure-driven foil,” Phys. Rev. E 92, 063111 (2015).10.1103/physreve.92.063111
    [38]
    M. Chen, N. Kumar, A. Pukhov, and T.-P. Yu, “Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets,” Phys. Plasmas 18, 073106 (2011).10.1063/1.3606562
    [39]
    W. Kruer, The Physics of Laser Plasma Interactions (CRC Press, 2019).
    [40]
    M. Chen, A. Pukhov, Z. M. Sheng, and X. Q. Yan, “Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets,” Phys. Plasmas 15, 113103 (2008).10.1063/1.3019105
    [41]
    Y. Wan, C.-H. Pai, C. J. Zhang, F. Li, Y. P. Wu, J. F. Hua, W. Lu, Y. Q. Gu, L. O. Silva, C. Joshi, and W. B. Mori, “Physical mechanism of the transverse instability in radiation pressure ion acceleration,” Phys. Rev. Lett. 117, 234801 (2016).10.1103/physrevlett.117.234801
    [42]
    B. Shen and Z. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E 64, 056406 (2001).10.1103/physreve.64.056406
    [43]
    B. Qiao, X. F. Shen, H. He, Y. Xie, H. Zhang, C. T. Zhou, S. P. Zhu, and X. T. He, “Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses,” Plasma Phys. Controlled Fusion 61, 014039 (2018).10.1088/1361-6587/aaf18e
    [44]
    X. Z. Wu, Z. Gong, Y. R. Shou, Y. H. Tang, J. Q. Yu, G. Mourou, and X. Q. Yan, “Efficiency enhancement of ion acceleration from thin target irradiated by multi-PW few-cycle laser pulses,” Phys. Plasmas 28, 023102 (2021).10.1063/5.0029171
    [45]
    G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics,” Eur. Phys. J.: Spec. Top. 223, 1181–1188 (2014).10.1140/epjst/e2014-02171-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (50) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return