Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Fan Mengqiu, Lin Shengtao, Yao Ke, Qi Yifei, Zhang Jiaojiao, Zheng Junwen, Wang Pan, Ni Longqun, Bao Xingyu, Zhou Dandan, Zhang Bo, Xiao Kaibo, Xia Handing, Zhang Rui, Li Ping, Zheng Wanguo, Wang Zinan. Spectrum-tailored random fiber laser towards ICF laser facility[J]. Matter and Radiation at Extremes, 2023, 8(2): 025902. doi: 10.1063/5.0129434
Citation: Fan Mengqiu, Lin Shengtao, Yao Ke, Qi Yifei, Zhang Jiaojiao, Zheng Junwen, Wang Pan, Ni Longqun, Bao Xingyu, Zhou Dandan, Zhang Bo, Xiao Kaibo, Xia Handing, Zhang Rui, Li Ping, Zheng Wanguo, Wang Zinan. Spectrum-tailored random fiber laser towards ICF laser facility[J]. Matter and Radiation at Extremes, 2023, 8(2): 025902. doi: 10.1063/5.0129434

Spectrum-tailored random fiber laser towards ICF laser facility

doi: 10.1063/5.0129434
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: znwang@uestc.edu.cn
  • Received Date: 2022-10-05
  • Accepted Date: 2022-12-21
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • Broadband low-coherence light is considered to be an effective way to suppress laser plasma instability. Recent studies have demonstrated the ability of low-coherence laser facilities to reduce back-scattering during beam–target coupling. However, to ensure simultaneous low coherence and high energy, complex spectral modulation methods and amplification routes have to be adopted. In this work, we propose the use of a random fiber laser (RFL) as the seed source. The spectral features of this RFL can be carefully tailored to provide a good match with the gain characteristics of the laser amplification medium, thus enabling efficient amplification while maintaining low coherence. First, a theoretical model is constructed to give a comprehensive description of the output characteristics of the spectrum-tailored RFL, after which the designed RFL is experimentally realized as a seed source. Through precise pulse shaping and efficient regenerative amplification, a shaped random laser pulse output of 28 mJ is obtained, which is the first random laser system with megawatt-class peak power that is able to achieve low coherence and efficient spectrum-conformal regenerative amplification.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Mengqiu Fan: Conceptualization (lead); Formal analysis (equal); Validation (lead); Writing – original draft (lead); Writing – review & editing (lead). Shengtao Lin: Formal analysis (equal); Validation (lead); Writing – original draft (lead); Writing – review & editing (lead). Ke Yao: Formal analysis (supporting); Methodology (supporting); Validation (supporting); Writing – review & editing (equal). Yifei Qi: Formal analysis (supporting); Validation (equal); Writing – original draft (equal); Writing – review & editing (supporting). Jiaojiao Zhang: Formal analysis (supporting); Validation (supporting); Writing – original draft (supporting); Writing – review & editing (supporting). Junwen Zheng: Funding acquisition (supporting); Validation (supporting). Pan Wang: Validation (supporting); Writing – original draft (supporting). Longqun Ni: Validation (supporting); Writing – original draft (supporting). Xingyu Bao: Validation (supporting); Writing – original draft (supporting). Dandan Zhou: Validation (supporting). Bo Zhang: Validation (supporting). Kaibo Xiao: Validation (supporting). Handing Xia: Formal analysis (supporting); Funding acquisition (supporting); Project administration (supporting); Resources (supporting); Supervision (supporting). Rui Zhang: Funding acquisition (supporting); Project administration (supporting); Resources (supporting); Supervision (equal). Ping Li: Formal analysis (supporting); Funding acquisition (equal); Project administration (supporting); Resources (supporting); Supervision (supporting); Validation (supporting); Writing – review & editing (equal). Wanguo Zheng: Funding acquisition (lead); Project administration (supporting); Resources (supporting); Supervision (equal); Validation (supporting). Zinan Wang: Conceptualization (lead); Formal analysis (equal); Funding acquisition (equal); Project administration (equal); Supervision (lead); Validation (supporting); Writing – review & editing (equal).
    Author Contributions
    M.F. and S.L. contributed equally to this work.
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
    [2]
    C. Labaune, “Incoherent light on the road to ignition,” Nat. Phys. 3, 680–682 (2007).10.1038/nphys742
    [3]
    S. H. Glenzer, D. H. Froula, L. Divol, M. Dorr, R. L. Berger, S. Dixit, B. A. Hammel, C. Haynam, J. A. Hittinger, J. P. Holder, O. S. Jones, D. H. Kalantar, O. L. Landen, A. B. Langdon, S. Langer, B. J. MacGowan, A. J. Mackinnon, N. Meezan, E. I. Moses, C. Niemann, C. H. Still, L. J. Suter, R. J. Wallace, E. A. Williams, and B. K. F. Young, “Experiments and multiscale simulations of laser propagation through ignition-scale plasmas,” Nat. Phys. 3, 716–719 (2007).10.1038/nphys709
    [4]
    J. Lindl, O. Landen, J. Edwards, and E. Moses, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [5]
    D. Veron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).10.1016/0030-4018(93)90151-t
    [6]
    M. S. Pronko, R. H. Lehmberg, S. Obenschain, C. J. Pawley, C. K. Manka, and R. Eckardt, “Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature,” IEEE J. Quantum Electron. 26, 337–347 (1990).10.1109/3.44967
    [7]
    M. Nakatsuka, N. Miyanaga, T. Kanabe, H. Nakano, K. Tsubakimoto, and S. Nakai, “Partially coherent light sources for ICF experiment,” Proc. SPIE 1870, 151–162 (1993).10.1117/12.154482
    [8]
    S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, and A. N. Starodub, “Lasers for ICF with a controllable function of mutual coherence of radiation,” J. Russ. Laser Res. 25, 79–92 (2004).10.1023/b:jorr.0000012486.89881.d8
    [9]
    M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M (2007).10.1117/12.700478
    [10]
    A. Jolly, J.-F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coïc, “Fiber lasers integration for LMJ,” C. R. Phys. 7, 198–212 (2006).10.1016/j.crhy.2006.01.017
    [11]
    L. Hong-Huan, W. Jian-Jun, S. Zhan, L. Ming-Zhong, C. Guang-Hui, D. Lei, T. Jun, D. Qing-Hua, L. Yi-Ming, D. Yi-Fang, and L. Feng, “Integrated all fiber optical pulse generation system for laser fusion driver,” Acta Phys. Sin. 57, 1771 (2008).10.7498/aps.57.1771
    [12]
    [13]
    Y. Gao, L. Ji, X. Zhao, Y. Cui, D. Rao, W. Feng, L. Xia, D. Liu, T. Wang, H. Shi, F. Li, J. Liu, D. Pengyuan, X. Li, J. Liu, T. Zhang, C. Shan, Y. Hua, W. Ma, Z. Sui, J. Zhu, W. Pei, S. Fu, X. Sun, and X. Chen, “High-power, low-coherence laser driver facility,” Opt. Lett. 45, 6839 (2020).10.1364/ol.412197
    [14]
    D. Rao, Y. Gao, Y. Cui, L. Ji, X. Zhao, J. Liu, D. Liu, F. Li, C. Shan, H. Shi, J. Liu, W. Feng, X. Li, W. Ma, and Z. Sui, “1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control,” Opt. Laser Technol. 122, 105850 (2020).10.1016/j.optlastec.2019.105850
    [15]
    L. Ji, X. Zhao, D. Liu, Y. Gao, Y. Cui, D. Rao, W. Feng, F. Li, H. Shi, J. Liu, X. Li, L. Xia, T. Wang, J. Liu, P. Du, X. Sun, W. Ma, Z. Sui, and X. Chen, “High-efficiency second-harmonic generation of low-temporal-coherent light pulse,” Opt. Lett. 44, 4359 (2019).10.1364/ol.44.004359
    [16]
    Y. Cui, Y. Gao, D. Rao, D. Liu, F. Li, L. Ji, H. Shi, J. Liu, X. Zhao, W. Feng, L. Xia, J. Liu, X. Li, T. Wang, W. Ma, and Z. Sui, “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opt. Lett. 44, 2859 (2019).10.1364/ol.44.002859
    [17]
    C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28, 451 (2020).10.1364/oe.28.000451
    [18]
    C. Dorrer, M. Spilatro, S. Herman, T. Borger, and E. M. Hill, “Broadband sum-frequency generation of spectrally incoherent pulses,” Opt. Express 29, 16135 (2021).10.1364/oe.424167
    [19]
    C. Dorrer and M. Spilatro, “Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet,” Opt. Express 30, 4942 (2022).10.1364/oe.449418
    [20]
    J. W. Bates, J. F. Myatt, J. G. Shaw, R. K. Follett, J. L. Weaver, R. H. Lehmberg, and S. P. Obenschain, “Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E 97, 061202 (2018).10.1103/PhysRevE.97.061202
    [21]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, and Z. Sheng, “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes 2, 190–196 (2017).10.1016/j.mre.2017.06.001
    [22]
    S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).10.1038/nphoton.2010.4
    [23]
    D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. Wang, E. V. Podivilov, S. A. Babin, Y. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7, 516 (2015).10.1364/aop.7.000516
    [24]
    S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).10.1016/j.physrep.2014.02.011
    [25]
    Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: Theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 10–15 (2015).10.1109/jstqe.2014.2344293
    [26]
    H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44, 2613 (2019).10.1364/ol.44.002613
    [27]
    S. Lin, Z. Wang, Y. Qi, B. Han, H. Wu, and Y. Rao, “Wideband remote-sensing based on random fiber laser,” J. Lightwave Technol. 40, 3104–3110 (2022).10.1109/jlt.2022.3145581
    [28]
    H. Wu, H. Liu, W. Wang, Z. Wang, and H. Liang, “Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers,” Opt. Express 29, 21521 (2021).10.1364/oe.430578
    [29]
    S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).10.1103/physreva.84.021805
    [30]
    L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).10.1038/srep42611
    [31]
    J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62, 80–86 (2019).10.1007/s11431-017-9226-x
    [32]
    L. Zhang, H. Xie, Y. Li, F. Pang, W. Chen, L. Zhan, and T. Wang, “Towards optimal conversion efficiency of Brillouin random fiber lasers in a half-open linear cavity,” Opt. Express 30, 32097 (2022).10.1364/oe.467961
    [33]
    S. Du, T. Qi, D. Li, P. Yan, M. Gong, and Q. Xiao, “10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS,” IEEE Photonics Technol. Lett. 34, 721–724 (2022).10.1109/lpt.2022.3183025
    [34]
    L. Hu, D. He, H. Chen, X. Wang, T. Meng, L. Wen, J. Hu, Y. Xu, S. Li, Y. Chen, W. Chen, S. Chen, J. Tang, and B. Wang, “Research and development of neodymium phosphate laser glass for high power laser application,” Opt. Mater. 63, 213–220 (2017).10.1016/j.optmat.2016.11.052
    [35]
    H. Wu, B. Han, Z. Wang, and H. Liang, “Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser,” Chin. Opt. Lett. 19, 021402 (2021).10.3788/col202119.021402
    [36]
    S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394 (2011).10.1364/oe.19.008394
    [37]
    S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236 (2013).10.1364/oe.21.021236
    [38]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2, 243–255 (2017).10.1016/j.mre.2017.07.004
    [39]
    M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency random fiber laser with linear output,” IEEE Photonics Technol. Lett. 27, 319–322 (2015).10.1109/lpt.2014.2370644
    [40]
    S. Gao, X. Xie, J. Tang, C. Fan, X. Fu, Z. Chen, and K. Yao, “Multi-beam large fundamental mode neodymium glass regenerative amplifier with uniform performance,” Front. Phys. 10, 923402 (2022).10.3389/fphy.2022.923402
    [41]
    S. Lin, Z. Wang, Y. Qi, and Y. Rao, “Long-distance random fiber laser sensing system with ultra-fast signal demodulation,” in 2022 Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2022), p. Th2A.13.
    [42]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
    [43]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [44]
    S. Hüller and B. Afeyan, “Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses),” EPJ Web Conf. 59, 05010 (2013).10.1051/epjconf/20135905010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (147) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return