Citation: | Bukharskii N. D., Vais O. E., Korneev Ph. A., Bychenkov V. Yu.. Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm[J]. Matter and Radiation at Extremes, 2023, 8(1): 014404. doi: 10.1063/5.0126571 |
[1] |
C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, E54 (2019).10.1017/hpl.2019.36
|
[2] |
S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837–2839 (2004).10.1364/ol.29.002837
|
[3] |
V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).10.1364/oe.16.002109
|
[4] |
A. S. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. P. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, “Approaching the diffraction-limited, bandwidth-limited petawatt,” Opt. Express 25, 20486–20501 (2017).10.1364/oe.25.020486
|
[5] |
G. Tiwari, E. Gaul, M. Martinez, G. Dyer, J. Gordon, M. Spinks, T. Toncian, B. Bowers, X. Jiao, R. Kupfer, L. Lisi, E. McCary, R. Roycroft, A. Yandow, G. D. Glenn, M. Donovan, T. Ditmire, and B. M. Hegelich, “Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2,” Opt. Lett. 44, 2764–2767 (2019).10.1364/ol.44.002764
|
[6] |
J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412–20420 (2019).10.1364/oe.27.020412
|
[7] |
Z. Guo, L. Yu, J. Wang, C. Wang, Y. Liu, Z. Gan, W. Li, Y. Leng, X. Liang, and R. Li, “Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system,” Opt. Express 26, 26776–26786 (2018).10.1364/oe.26.026776
|
[8] |
J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
[9] |
E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001).10.1103/physreva.63.042712
|
[10] |
K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue, and H. Ueda, “Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019 W/cm2,” Phys. Rev. A 68, 065403 (2003).10.1103/physreva.68.065403
|
[11] |
M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn, and S. Weber, “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
|
[12] |
O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt. Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
|
[13] |
W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, “High-order multiphoton Thomson scattering,” Nat. Photonics 11, 514–520 (2017).10.1038/nphoton.2017.100
|
[14] |
J. M. Krämer, A. Jochmann, M. Budde, M. Bussmann, J. P. Couperus, T. E. Cowan, A. Debus, A. Köhler, M. Kuntzsch, A. Laso García, U. Lehnert, P. Michel, R. Pausch, O. Zarini, U. Schramm, and A. Irman, “Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications,” Sci. Rep. 8, 1398 (2018).10.1038/s41598-018-19546-0
|
[15] |
O. E. Vais, S. G. Bochkarev, and V. Y. Bychenkov, “Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse,” Plasma Phys. Rep. 42, 818–833 (2016).10.1134/s1063780x16090105
|
[16] |
C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado, G. Zeraouli, G. Gatti, L. Roso, R. Fedosejevs, and W. T. Hill, “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt. Express 27, 30020–30030 (2019).10.1364/oe.27.030020
|
[17] |
O. E. Vais and V. Y. Bychenkov, “Nonlinear Thomson scattering of a tightly focused relativistically intense laser pulse by an ensemble of particles,” Quantum Electron. 50, 922–928 (2020).10.1070/qel17344
|
[18] |
F. Mackenroth and A. R. Holkundkar, “Determining the duration of an ultra-intense laser pulse directly in its focus,” Sci. Rep. 9, 19607 (2019).10.1038/s41598-019-55949-3
|
[19] |
C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Accel. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
|
[20] |
I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
|
[21] |
F. Mackenroth, A. R. Holkundkar, and H.-P. Schlenvoigt, “Ultra-intense laser pulse characterization using ponderomotive electron scattering,” New J. Phys. 21, 123028 (2019).10.1088/1367-2630/ab5c4d
|
[22] |
S. X. Hu and A. F. Starace, “GeV electrons from ultraintense laser interaction with highly charged ions,” Phys. Rev. Lett. 88, 245003 (2002).10.1103/physrevlett.88.245003
|
[23] |
A. Maltsev and T. Ditmire, “Above threshold ionization in tightly focused, strongly relativistic laser fields,” Phys. Rev. Lett. 90, 053002 (2003).10.1103/PhysRevLett.90.053002
|
[24] |
A. L. Galkin, M. P. Kalashnikov, V. K. Klinkov, V. V. Korobkin, M. Y. Romanovsky, and O. B. Shiryaev, “Electrodynamics of electron in a superintense laser field: New principles of diagnostics of relativistic laser intensity,” Phys. Plasmas 17, 053105 (2010).10.1063/1.3425864
|
[25] |
M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin, M. Romanovsky, O. Shiryaev, M. Schnuerer, J. Braenzel, V. Trofimov et al., “Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region,” Laser Part. Beams 33, 361–366 (2015).10.1017/s0263034615000403
|
[26] |
K. A. Ivanov, I. N. Tsymbalov, O. E. Vais, S. G. Bochkarev, R. V. Volkov, V. Y. Bychenkov, and A. B. Savel’ev, “Accelerated electrons for in situ peak intensity monitoring of tightly focused femtosecond laser radiation at high intensities,” Plasma Phys. Controlled Fusion 60, 105011 (2018).10.1088/1361-6587/aada60
|
[27] |
O. E. Vais, S. G. Bochkarev, S. Ter-Avetisyan, and V. Y. Bychenkov, “Angular distribution of electrons directly accelerated by an intense tightly focused laser pulse,” Quantum Electron. 47, 38–41 (2017).10.1070/qel16259
|
[28] |
O. E. Vais and V. Y. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
|
[29] |
O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
|
[30] |
O. E. Vais and V. Y. Bychenkov, “Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons,” Plasma Phys. Controlled Fusion 63, 014002 (2020).10.1088/1361-6587/abc92a
|
[31] |
M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
|
[32] |
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis 115, 211–252 (2015).10.1007/s11263-015-0816-y
|
[33] |
R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: An overview and application in radiology,” Insights Imaging 9, 611–629 (2018).10.1007/s13244-018-0639-9
|
[34] |
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).10.1038/nature14539
|
[35] |
J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys. 13, 431–434 (2017).10.1038/nphys4035
|
[36] |
K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, “Machine learning phases of strongly correlated fermions,” Phys. Rev. X 7, 031038 (2017).10.1103/PhysRevX.7.031038
|
[37] |
P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, “Deep learning in color: Towards automated quark/gluon jet discrimination,” J. High Energy Phys. 2017, 110.10.1007/jhep01(2017)110
|
[38] |
K. Fukami, K. Fukagata, and K. Taira, “Super-resolution reconstruction of turbulent flows with machine learning,” J. Fluid Mech. 870, 106–120 (2019).10.1017/jfm.2019.238
|
[39] |
A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neural network neutrino event classifier,” J. Instrum. 11, P09001 (2016).10.1088/1748-0221/11/09/p09001
|
[40] |
A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi, and L. Song, “Material structure-property linkages using three-dimensional convolutional neural networks,” Acta Mater. 146, 76–84 (2018).10.1016/j.actamat.2017.11.053
|
[41] |
V. Das, A. Pollack, U. Wollner, and T. Mukerji, “Convolutional neural network for seismic impedance inversion,” Geophysics 84, R869–R880 (2019).10.1190/geo2018-0838.1
|
[42] |
I. V. Kochetkov, N. D. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law, V. Ospina-Bohorquez, J. J. Santos, S. Fujioka, G. Schaumann, B. Zielbauer, A. Kuznetsov, and P. Korneev, “Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses,” Sci. Rep. 12, 13734 (2022).10.1038/s41598-022-17202-2
|
[43] |
W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, New York, 1988).
|
[44] |
J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).10.1103/physrev.56.99
|
[45] |
C. Zhang, Z. Nie, Y. Wu, M. Sinclair, C.-K. Huang, K. A. Marsh, and C. Joshi, “Ionization induced plasma grating and its applications in strong-field ionization measurements,” Plasma Phys. Controlled Fusion 63, 095011 (2021).10.1088/1361-6587/ac1751
|
[46] |
S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B: Lasers Opt. 80, 823–832 (2005).10.1007/s00340-005-1803-8
|
[47] |
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, 2007).
|
[48] |
J. Dumont, F. Fillion-Gourdeau, C. Lefebvre, D. Gagnon, and S. MacLean, “Efficiently parallelized modeling of tightly focused, large bandwidth laser pulses,” J. Opt. 19, 025604 (2017).10.1088/2040-8986/aa52e9
|
[49] |
P. Varga and P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17, 2081–2089 (2000).10.1364/josaa.17.002081
|
[50] |
S. M. Sepke and D. P. Umstadter, “Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length,” Opt. Lett. 31, 2589–2591 (2006).10.1364/ol.31.002589
|
[51] |
D. An der Brügge and A. Pukhov, “Ultrashort focused electromagnetic pulses,” Phys. Rev. E 79, 016603 (2009).10.1103/PhysRevE.79.016603
|
[52] |
J.-X. Li, Y. I. Salamin, K. Z. Hatsagortsyan, and C. H. Keitel, “Fields of an ultrashort tightly focused laser pulse,” J. Opt. Soc. Am. B 33, 405–411 (2016).10.1364/josab.33.000405
|
[53] |
H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics, 3rd ed., Cambridge Mathematical Library (Cambridge University Press, 1999).
|
[54] |
M. Titterington, “Neural networks,” Wiley Interdiscip. Rev.: Comput. Stat. 2, 1–8 (2010).10.1002/wics.50
|
[55] |
M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer, New York, 2013).
|
[56] | |
[57] | |
[58] |
D. M. Hawkins, “The problem of overfitting,” J. Chem. Inf. Comput. Sci. 44, 1–12 (2004).10.1021/ci0342472
|
[59] |
B. L. Peko and T. M. Stephen, “Absolute detection efficiencies of low energy H, H−, H+, H2+ and H3+ incident on a multichannel plate detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 171, 597–604 (2000).10.1016/s0168-583x(00)00306-2
|
[60] |
F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, E43 (2020).10.1017/hpl.2020.41
|
[61] |
B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).10.3928/1081-597X-20010901-13
|
![]() |
![]() |