Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Bukharskii N. D., Vais O. E., Korneev Ph. A., Bychenkov V. Yu.. Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm[J]. Matter and Radiation at Extremes, 2023, 8(1): 014404. doi: 10.1063/5.0126571
Citation: Bukharskii N. D., Vais O. E., Korneev Ph. A., Bychenkov V. Yu.. Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm[J]. Matter and Radiation at Extremes, 2023, 8(1): 014404. doi: 10.1063/5.0126571

Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm

doi: 10.1063/5.0126571
More Information
  • Corresponding author: b)Author to whom correspondence should be addressed: ovais@lebedev.ru
  • Received Date: 2022-09-16
  • Accepted Date: 2022-11-30
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases. For these purposes, we use a convolutional neural network architecture. Training and testing datasets are calculated using the test particle method, with the laser description in the form of Stratton–Chu integrals, which model laser pulses focused by an off-axis parabolic mirror down to the diffraction limit. To demonstrate the power and robustness of this method, we discuss the reconstruction of axially symmetric intensity profiles for laser pulses with intensities and focal diameters in the ranges of 1021–1023 W cm−2 and ∼(1–4)λ, respectively. This approach has prospects for implementation at higher intensities and with asymmetric laser beams, and it can provide a valuable diagnostic method for emerging extremely intense laser facilities.
  • loading
  • [1]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, E54 (2019).10.1017/hpl.2019.36
    [2]
    S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837–2839 (2004).10.1364/ol.29.002837
    [3]
    V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).10.1364/oe.16.002109
    [4]
    A. S. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. P. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, “Approaching the diffraction-limited, bandwidth-limited petawatt,” Opt. Express 25, 20486–20501 (2017).10.1364/oe.25.020486
    [5]
    G. Tiwari, E. Gaul, M. Martinez, G. Dyer, J. Gordon, M. Spinks, T. Toncian, B. Bowers, X. Jiao, R. Kupfer, L. Lisi, E. McCary, R. Roycroft, A. Yandow, G. D. Glenn, M. Donovan, T. Ditmire, and B. M. Hegelich, “Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2,” Opt. Lett. 44, 2764–2767 (2019).10.1364/ol.44.002764
    [6]
    J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412–20420 (2019).10.1364/oe.27.020412
    [7]
    Z. Guo, L. Yu, J. Wang, C. Wang, Y. Liu, Z. Gan, W. Li, Y. Leng, X. Liang, and R. Li, “Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system,” Opt. Express 26, 26776–26786 (2018).10.1364/oe.26.026776
    [8]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [9]
    E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001).10.1103/physreva.63.042712
    [10]
    K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue, and H. Ueda, “Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019 W/cm2,” Phys. Rev. A 68, 065403 (2003).10.1103/physreva.68.065403
    [11]
    M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn, and S. Weber, “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
    [12]
    O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt. Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
    [13]
    W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, “High-order multiphoton Thomson scattering,” Nat. Photonics 11, 514–520 (2017).10.1038/nphoton.2017.100
    [14]
    J. M. Krämer, A. Jochmann, M. Budde, M. Bussmann, J. P. Couperus, T. E. Cowan, A. Debus, A. Köhler, M. Kuntzsch, A. Laso García, U. Lehnert, P. Michel, R. Pausch, O. Zarini, U. Schramm, and A. Irman, “Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications,” Sci. Rep. 8, 1398 (2018).10.1038/s41598-018-19546-0
    [15]
    O. E. Vais, S. G. Bochkarev, and V. Y. Bychenkov, “Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse,” Plasma Phys. Rep. 42, 818–833 (2016).10.1134/s1063780x16090105
    [16]
    C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado, G. Zeraouli, G. Gatti, L. Roso, R. Fedosejevs, and W. T. Hill, “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt. Express 27, 30020–30030 (2019).10.1364/oe.27.030020
    [17]
    O. E. Vais and V. Y. Bychenkov, “Nonlinear Thomson scattering of a tightly focused relativistically intense laser pulse by an ensemble of particles,” Quantum Electron. 50, 922–928 (2020).10.1070/qel17344
    [18]
    F. Mackenroth and A. R. Holkundkar, “Determining the duration of an ultra-intense laser pulse directly in its focus,” Sci. Rep. 9, 19607 (2019).10.1038/s41598-019-55949-3
    [19]
    C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Accel. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
    [20]
    I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
    [21]
    F. Mackenroth, A. R. Holkundkar, and H.-P. Schlenvoigt, “Ultra-intense laser pulse characterization using ponderomotive electron scattering,” New J. Phys. 21, 123028 (2019).10.1088/1367-2630/ab5c4d
    [22]
    S. X. Hu and A. F. Starace, “GeV electrons from ultraintense laser interaction with highly charged ions,” Phys. Rev. Lett. 88, 245003 (2002).10.1103/physrevlett.88.245003
    [23]
    A. Maltsev and T. Ditmire, “Above threshold ionization in tightly focused, strongly relativistic laser fields,” Phys. Rev. Lett. 90, 053002 (2003).10.1103/PhysRevLett.90.053002
    [24]
    A. L. Galkin, M. P. Kalashnikov, V. K. Klinkov, V. V. Korobkin, M. Y. Romanovsky, and O. B. Shiryaev, “Electrodynamics of electron in a superintense laser field: New principles of diagnostics of relativistic laser intensity,” Phys. Plasmas 17, 053105 (2010).10.1063/1.3425864
    [25]
    M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin, M. Romanovsky, O. Shiryaev, M. Schnuerer, J. Braenzel, V. Trofimov et al., “Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region,” Laser Part. Beams 33, 361–366 (2015).10.1017/s0263034615000403
    [26]
    K. A. Ivanov, I. N. Tsymbalov, O. E. Vais, S. G. Bochkarev, R. V. Volkov, V. Y. Bychenkov, and A. B. Savel’ev, “Accelerated electrons for in situ peak intensity monitoring of tightly focused femtosecond laser radiation at high intensities,” Plasma Phys. Controlled Fusion 60, 105011 (2018).10.1088/1361-6587/aada60
    [27]
    O. E. Vais, S. G. Bochkarev, S. Ter-Avetisyan, and V. Y. Bychenkov, “Angular distribution of electrons directly accelerated by an intense tightly focused laser pulse,” Quantum Electron. 47, 38–41 (2017).10.1070/qel16259
    [28]
    O. E. Vais and V. Y. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
    [29]
    O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
    [30]
    O. E. Vais and V. Y. Bychenkov, “Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons,” Plasma Phys. Controlled Fusion 63, 014002 (2020).10.1088/1361-6587/abc92a
    [31]
    M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
    [32]
    O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis 115, 211–252 (2015).10.1007/s11263-015-0816-y
    [33]
    R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: An overview and application in radiology,” Insights Imaging 9, 611–629 (2018).10.1007/s13244-018-0639-9
    [34]
    Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).10.1038/nature14539
    [35]
    J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys. 13, 431–434 (2017).10.1038/nphys4035
    [36]
    K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, “Machine learning phases of strongly correlated fermions,” Phys. Rev. X 7, 031038 (2017).10.1103/PhysRevX.7.031038
    [37]
    P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, “Deep learning in color: Towards automated quark/gluon jet discrimination,” J. High Energy Phys. 2017, 110.10.1007/jhep01(2017)110
    [38]
    K. Fukami, K. Fukagata, and K. Taira, “Super-resolution reconstruction of turbulent flows with machine learning,” J. Fluid Mech. 870, 106–120 (2019).10.1017/jfm.2019.238
    [39]
    A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neural network neutrino event classifier,” J. Instrum. 11, P09001 (2016).10.1088/1748-0221/11/09/p09001
    [40]
    A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi, and L. Song, “Material structure-property linkages using three-dimensional convolutional neural networks,” Acta Mater. 146, 76–84 (2018).10.1016/j.actamat.2017.11.053
    [41]
    V. Das, A. Pollack, U. Wollner, and T. Mukerji, “Convolutional neural network for seismic impedance inversion,” Geophysics 84, R869–R880 (2019).10.1190/geo2018-0838.1
    [42]
    I. V. Kochetkov, N. D. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law, V. Ospina-Bohorquez, J. J. Santos, S. Fujioka, G. Schaumann, B. Zielbauer, A. Kuznetsov, and P. Korneev, “Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses,” Sci. Rep. 12, 13734 (2022).10.1038/s41598-022-17202-2
    [43]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, New York, 1988).
    [44]
    J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).10.1103/physrev.56.99
    [45]
    C. Zhang, Z. Nie, Y. Wu, M. Sinclair, C.-K. Huang, K. A. Marsh, and C. Joshi, “Ionization induced plasma grating and its applications in strong-field ionization measurements,” Plasma Phys. Controlled Fusion 63, 095011 (2021).10.1088/1361-6587/ac1751
    [46]
    S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2),” Appl. Phys. B: Lasers Opt. 80, 823–832 (2005).10.1007/s00340-005-1803-8
    [47]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, 2007).
    [48]
    J. Dumont, F. Fillion-Gourdeau, C. Lefebvre, D. Gagnon, and S. MacLean, “Efficiently parallelized modeling of tightly focused, large bandwidth laser pulses,” J. Opt. 19, 025604 (2017).10.1088/2040-8986/aa52e9
    [49]
    P. Varga and P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17, 2081–2089 (2000).10.1364/josaa.17.002081
    [50]
    S. M. Sepke and D. P. Umstadter, “Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length,” Opt. Lett. 31, 2589–2591 (2006).10.1364/ol.31.002589
    [51]
    D. An der Brügge and A. Pukhov, “Ultrashort focused electromagnetic pulses,” Phys. Rev. E 79, 016603 (2009).10.1103/PhysRevE.79.016603
    [52]
    J.-X. Li, Y. I. Salamin, K. Z. Hatsagortsyan, and C. H. Keitel, “Fields of an ultrashort tightly focused laser pulse,” J. Opt. Soc. Am. B 33, 405–411 (2016).10.1364/josab.33.000405
    [53]
    H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics, 3rd ed., Cambridge Mathematical Library (Cambridge University Press, 1999).
    [54]
    M. Titterington, “Neural networks,” Wiley Interdiscip. Rev.: Comput. Stat. 2, 1–8 (2010).10.1002/wics.50
    [55]
    M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer, New York, 2013).
    [56]
    [57]
    [58]
    D. M. Hawkins, “The problem of overfitting,” J. Chem. Inf. Comput. Sci. 44, 1–12 (2004).10.1021/ci0342472
    [59]
    B. L. Peko and T. M. Stephen, “Absolute detection efficiencies of low energy H, H−, H+, H2+ and H3+ incident on a multichannel plate detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 171, 597–604 (2000).10.1016/s0168-583x(00)00306-2
    [60]
    F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, E43 (2020).10.1017/hpl.2020.41
    [61]
    B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).10.3928/1081-597X-20010901-13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (45) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return