Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Hue Céline S., Wan Yang, Levine Eitan Y., Malka Victor. Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators[J]. Matter and Radiation at Extremes, 2023, 8(2): 024401. doi: 10.1063/5.0126293
Citation: Hue Céline S., Wan Yang, Levine Eitan Y., Malka Victor. Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators[J]. Matter and Radiation at Extremes, 2023, 8(2): 024401. doi: 10.1063/5.0126293

Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators

doi: 10.1063/5.0126293
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: celine.hue@weizmann.ac.il and yang.wan@weizmann.ac.il
  • Received Date: 2022-09-15
  • Accepted Date: 2023-01-30
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • Density downramp injection has been demonstrated to be an elegant and efficient approach for generating high-quality electron beams in laser wakefield accelerators. Recent studies have demonstrated the possibilities of generating electron beams with charges ranging from tens to hundreds of picocoulombs while maintaining good beam quality. However, the plasma and laser parameters in these studies have been limited to specific ranges or attention has been focused on separate physical processes such as beam loading, which affects the uniformity of the accelerating field and thus the energy spread of the trapped electrons, the repulsive force from the rear spike of the bubble, which reduces the transverse momentum p of the trapped electrons and results in small beam emittance, and the laser evolution when traveling in the plasma. In this work, we present a comprehensive numerical study of downramp injection in the laser wakefield, and we demonstrate that the current profile of the injected electron beam is directly correlated with the density transition parameters, which further affects the beam charge and energy evolution. By fine-tuning the plasma density parameters, electron beams with high charge (up to several hundreds of picocoulombs) and low energy spread (around 1% FWHM) can be obtained. All these results are supported by large-scale quasi-three-dimensional particle-in-cell simulations. We anticipate that the electron beams with tunable beam properties generated using this approach will be suitable for a wide range of applications.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Céline S. Hue: Conceptualization (equal); Data curation (equal); Investigation (equal); Methodology (equal); Visualization (equal); Writing – original draft (equal). Yang Wan: Conceptualization (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Eitan Y. Levine: Investigation (equal). Victor Malka: Conceptualization (supporting); Funding acquisition (lead); Methodology (supporting); Project administration (lead); Supervision (lead); Validation (supporting); Writing – review & editing (lead).
    In this article, all numerical simulations are performed with the quasi-3D particle-in-cell (PIC) code FBPIC,26 where the algorithm is based on Fourier–Bessel decomposition of fields on a set of 2D radial grids. Here an example input file for launching the simulation is attached. The concerned parameters for each simulation are indicated percisely in the article.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [2]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).10.1103/revmodphys.81.1229
    [3]
    V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).10.1063/1.3695389
    [4]
    S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, “Electron self-injection and trapping into an evolving plasma bubble,” Phys. Rev. Lett. 103, 135004 (2009).10.1103/physrevlett.103.135004
    [5]
    I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, “Electron self-injection in multidimensional relativistic-plasma wake fields,” Phys. Rev. Lett. 103, 175003 (2009).10.1103/physrevlett.103.175003
    [6]
    D. H. Froula, C. E. Clayton, T. Döppner, K. A. Marsh, C. P. J. Barty, L. Divol, R. A. Fonseca, S. H. Glenzer, C. Joshi, W. Lu et al., “Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator,” Phys. Rev. Lett. 103, 215006 (2009).10.1103/physrevlett.103.215006
    [7]
    S. P. Mangles, G. Genoud, M. S. Bloom, M. Burza, Z. Najmudin, A. Persson, K. Svensson, A. G. R. Thomas, and C.-G. Wahlström, “Self-injection threshold in self-guided laser wakefield accelerators,” Phys. Rev. Spec. Top.–Accel. Beams 15, 011302 (2012).10.1103/physrevstab.15.011302
    [8]
    Y. Wan, O. Seemann, S. Tata, I. A. Andriyash, S. Smartsev, E. Kroupp, and V. Malka, “Direct observation of relativistic broken plasma waves,” Nat. Phys. 18, 1186–1190 (2022).10.1038/s41567-022-01717-6
    [9]
    C. McGuffey, A. G. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick et al., “Ionization induced trapping in a laser wakefield accelerator,” Phys. Rev. Lett. 104, 025004 (2010).10.1103/PhysRevLett.104.025004
    [10]
    A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/PhysRevLett.104.025003
    [11]
    B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu et al., “Demonstration of a narrow energy spread, ∼0.5 GeV electron beam from a two-stage laser wakefield accelerator,” Phys. Rev. Lett. 107, 045001 (2011).10.1103/PhysRevLett.107.045001
    [12]
    S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, “Particle injection into the wave acceleration phase due to nonlinear wake wave breaking,” Phys. Rev. E 58, R5257–R5260 (1998).10.1103/physreve.58.r5257
    [13]
    K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, “Density-transition based electron injector for laser driven wakefield accelerators,” Phys. Rev. Spec. Top.–Accel. Beams 13, 091301 (2010).10.1103/physrevstab.13.091301
    [14]
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110, 185006 (2013).10.1103/physrevlett.110.185006
    [15]
    F. M. Foerster, A. Döpp, F. Haberstroh, K. v. Grafenstein, D. Campbell, Y.-Y. Chang, S. Corde, J. P. Couperus Cabadağ, A. Debus, M. F. Gilljohann, A. F. Habib, T. Heinemann, B. Hidding, A. Irman, F. Irshad, A. Knetsch, O. Kononenko, A. Martinez de la Ossa, A. Nutter, R. Pausch, G. Schilling, A. Schletter, S. Schöbel, U. Schramm, E. Travac, P. Ufer, and S. Karsch, “Stable and high-quality electron beams from staged laser and plasma wakefield accelerators,” Phys. Rev. X 12, 041016 (2022).10.1103/physrevx.12.041016
    [16]
    W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x
    [17]
    H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, “Plasma electron trapping and acceleration in a plasma wake field using a density transition,” Phys. Rev. Lett. 86, 1011 (2001).10.1103/physrevlett.86.1011
    [18]
    X. L. Xu, F. Li, W. An, T. N. Dalichaouch, P. Yu, W. Lu, C. Joshi, and W. B. Mori, “High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime,” Phys. Rev. Accel. Beams 20, 111303 (2017).10.1103/physrevaccelbeams.20.111303
    [19]
    A. M. de la Ossa, Z. Hu, M. Streeter, T. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).10.1103/physrevaccelbeams.20.091301
    [20]
    G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, “Self-focusing of short intense pulses in plasmas,” Phys. Fluids 30, 526–532 (1987).10.1063/1.866349
    [21]
    J. Vieira, F. Fiúza, L. O. Silva, M. Tzoufras, and W. B. Mori, “Onset of self-steepening of intense laser pulses in plasmas,” New J. Phys. 12, 045025 (2010).10.1088/1367-2630/12/4/045025
    [22]
    S. A. Samant, A. K. Upadhyay, and S. Krishnagopal, “High brightness electron beams from density transition laser wakefield acceleration for short-wavelength free-electron lasers,” Plasma Phys. Controlled Fusion 56, 095003 (2014).10.1088/0741-3335/56/9/095003
    [23]
    F. Massimo, A. F. Lifschitz, C. Thaury, and V. Malka, “Numerical studies of density transition injection in laser wakefield acceleration,” Plasma Phys. Controlled Fusion 59, 085004 (2017).10.1088/1361-6587/aa717d
    [24]
    H. Ekerfelt, M. Hansson, I. Gallardo González, X. Davoine, and O. Lundh, “A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration,” Sci. Rep. 7, 12229 (2017).10.1038/s41598-017-12560-8
    [25]
    T. Kurz, T. Heinemann, M. F. Gilljohann, Y. Y. Chang, J. P. Couperus Cabadağ, A. Debus, O. Kononenko, R. Pausch, S. Schöbel, R. W. Assmann et al., “Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams,” Nat. Commun. 12, 2895 (2021).10.1038/s41467-021-23000-7
    [26]
    R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, “A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm,” Comput. Phys. Commun. 203, 66–82 (2016).10.1016/j.cpc.2016.02.007
    [27]
    E. Kroupp, S. Tata, Y. Wan, D. Levy, S. Smartsev, E. Y. Levine, O. Seemann, M. Adelberg, R. Piliposian, T. Queller, E. Segre, K. Ta Phuoc, M. Kozlova, and V. Malka, “Commissioning and first results from the new 2 × 100 TW laser at the WIS,” Matter Radiat. Extremes 7, 044401 (2022).10.1063/5.0090514
    [28]
    W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.–Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
    [29]
    C. Thaury, E. Guillaume, A. Lifschitz, K. Ta Phuoc, M. Hansson, G. Grittani, J. Gautier, J.-P. Goddet, A. Tafzi, O. Lundh, and V. Malka, “Shock assisted ionization injection in laser-plasma accelerators,” Sci. Rep. 5, 16310 (2015).10.1038/srep16310
    [30]
    M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira, R. A. Fonseca, and L. O. Silva, “Beam loading in the nonlinear regime of plasma-based acceleration,” Phys. Rev. Lett. 101, 145002 (2008).10.1103/physrevlett.101.145002
    [31]
    Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanowski, and U. Oelfke, “Radiotherapy with laser-plasma accelerators: Monte Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam,” Med. Phys. 33, 155–162 (2006).10.1118/1.2140115
    [32]
    T. Fuchs, H. Szymanowski, U. Oelfke, Y. Glinec, C. Rechatin, J. Faure, and V. Malka, “Treatment planning for laser-accelerated very-high energy electrons,” Phys. Med. Biol. 54, 3315–3328 (2009).10.1088/0031-9155/54/11/003
    [33]
    V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4, 447–453 (2008).10.1038/nphys966
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (65) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return