Citation: | Burakovsky Leonid, Preston Dean L., Ramsey Scott D., Starrett Charles E., Baty Roy S.. Shock standards Cu, Ag, Ir, and Pt in a wide pressure range[J]. Matter and Radiation at Extremes, 2023, 8(4): 046901. doi: 10.1063/5.0124555 |
[1] |
J. W. Forbes, “Impedance matching technique,” in Shock Wave Compression of Condensed Matter, Shock Wave and High Pressure Phenomena (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 31–57.
|
[2] |
J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, “Shock-wave compressions of twenty-seven metals. Equations of state of metals,” Phys. Rev. 108, 196 (1957).10.1103/physrev.108.196
|
[3] |
R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31, 1253 (1960).10.1063/1.1735815
|
[4] |
L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev, V. I. Zhuchikhin, and M. I. Brazhnik, “Dynamic compressibility and equation of state of iron under high pressure,” Sov. Phys. JETP 34, 606 (1958).
|
[5] |
A. I. Funtikov, “Phase diagram and melting curve of iron obtained using the data of static and shock-wave measurements,” High Temp. 41, 850 (2003).10.1023/b:hite.0000008344.89730.69
|
[6] |
J. M. Brown and R. G. McQueen, “Melting of iron under core conditions,” Geophys. Res. Lett. 7, 533, (1980).10.1029/gl007i007p00533
|
[7] |
J. M. Brown and R. G. McQueen, “Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa,” J. Geophys. Res. 91, 7485, (1986).10.1029/jb091ib07p07485
|
[8] |
B. K. Godwal, F. González-Cataldo, A. K. Verma, L. Stixrude, and R. Jeanloz, “Stability of iron crystal structures at 0.3–1.5 TPa,” Earth Planet. Sci. Lett. 409, 299 (2015).10.1016/j.epsl.2014.10.056
|
[9] |
A. S. Vladimirov, N. P. Voloshin, V. N. Nogin, A. V. Petrovtsev, and V. A. Simonenko, “Shock compressibility of aluminum at p ≳ 1 Gbar,” JETP Lett 39, 82 (1984).
|
[10] |
D. N. Polsin et al., “Measurement of body-centered-cubic aluminum at 475 GPa,” Phys. Rev. Lett. 119, 175702 (2017);10.1103/physrevlett.119.175702
|
[11] |
Yu. B. Kudasov et al., “Lattice dynamics and phase diagram of aluminum at high temperatures,” J. Exp. Theor. Phys. 117, 664 (2013).10.1134/s1063776113100038
|
[12] |
S. R. Baty, L. Burakovsky, and D. Errandonea, “Ab initio phase diagram of copper,” Crystals 11, 537 (2021).10.3390/cryst11050537
|
[13] |
S. R. Baty, L. Burakovsky, and D. Errandonea, “Ab initio phase diagram of silver,” J. Phys.: Condens. Matter 33, 485901 (2021).10.1088/1361-648x/ac23fb
|
[14] | |
[15] |
M. D. Knudson, “Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments,” AIP Conf. Proc. 1426, 35 (2012).10.1063/1.3686216
|
[16] |
L. Burakovsky, S. P. Chen, D. L. Preston, and D. G. Sheppard, “Z methodology for phase diagram studies: Platinum and tantalum as examples,” J. Phys.: Conf. Ser. 500, 162001 (2014).10.1088/1742-6596/500/16/162001
|
[17] |
L. Burakovsky et al., “Ab initio phase diagram of iridium,” Phys. Rev. B 94, 094112 (2016).10.1103/physrevb.94.094112
|
[18] | |
[19] |
H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673, (1986).10.1029/jb091ib05p04673
|
[20] |
W. J. Carter, S. P. Marsh, J. N. Fritz, and R. G. McQueen, Accurate Characterization of the High-Pressure Environment, NBS Special Publication Vol. 326 (National Bureau of Standards, 1971), p. 147.
|
[21] |
I. V. Lomonosov and S. V. Fortova, “Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes,” High Temp. 55, 585 (2017).10.1134/s0018151x17040113
|
[22] |
M. K. Wallace, J. M. Winey, and Y. M. Gupta, “Shock compression of silver to 300 GPa: Wave profile measurements and melting transition,” Phys. Rev. B 104, 014101 (2021).10.1103/physrevb.104.014101
|
[23] |
C. A. McCoy, M. D. Knudson, and S. Root, “Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures,” Phys. Rev. B 96, 174109 (2017).10.1103/physrevb.96.174109
|
[24] |
H. Liu et al., “Validation for equation of state in wide regime: Copper as prototype,” Matter Radiat. Extremes 1, 123 (2016).10.1016/j.mre.2016.03.002
|
[25] |
M. Guinan and D. Steinberg, “A simple approach to extrapolating measured polycrystalline shear moduli to very high pressure,” J. Phys. Chem. Solids 36, 829 (1975).10.1016/0022-3697(75)90109-2
|
[26] |
N. N. Kalitkin and L. V. Kuz’mina, “Copper as a shockwave standard,” Dokl. Phys. 43, 276 (1998).
|
[27] |
M. C. Marshall et al., “Developing quartz and molybdenum as impedance-matching standards in the 100-Mbar regime,” Phys. Rev. B 99, 174101 (2019).10.1103/physrevb.99.174101
|
[28] |
D. G. Hicks et al., “Shock compression of quartz in the high-pressure fluid regime,” Phys. Plasmas 12, 082702 (2005).10.1063/1.2009528
|
[29] |
M. D. Knudson and M. P. Desjarlais, “Shock compression of quartz to 1.6 TPa: Redefining a pressure standard,” Phys. Rev. Lett. 103, 225501 (2009).10.1103/physrevlett.103.225501
|
[30] |
M. D. Knudson and M. P. Desjarlais, “Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime,” Phys. Rev. B 88, 184107 (2013).10.1103/physrevb.88.184107
|
[31] |
S. Root, J. P. Townsend, and M. D. Knudson, “Shock compression of fused silica: An impedance matching standard,” J. Appl. Phys. 126, 165901 (2019).10.1063/1.5126205
|
[32] |
L. Burakovsky, D. L. Preston, S. D. Ramsey, and R. S. Baty, “Analytic model of principal Hugoniot at all pressures,” J. Appl. Phys. 132, 215109 (2022).10.1063/5.0121445
|
[33] |
N. N. Kalitkin and L. V. Kuzmina, “Quantum-statistical Hugoniots of porous substances,” Mat. Model. 10(7), 111 (1998).
|
[34] |
N. N. Kalitkin and L. V. Kuzmina, “Wide-range characteristic thermodynamic curves,” in High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, edited by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Springer-Verlag, New York, 2004), p. 116.
|
[35] |
N. N. Kalitkin and L. V. Kuzmina, “Shock Hugoniots of 83 substances,” Chem. Phys. Rep. 18, 1913 (2000).
|
[36] | |
[37] | |
[38] |
J. D. Johnson, “The features of the principal Hugoniot,” AIP Conf. Proc. 429, 27 (1998).10.1063/1.55632
|
[39] | |
[40] |
R. W. Gómez, “A simple model to calculate total and ionization energies of any atom,” Eur. J. Phys. 40, 015403 (2019).10.1088/1361-6404/aaea81
|
[41] | |
[42] |
L. V. Al’tshuler, N. N. Kalitkin, L. V. Kuz’mina, and B. S. Chekin, “Shock adiabats for ultrahigh pressures,” Sov. Phys. JETP 45, 167 (1977).
|
[43] |
N. Ozaki, W. J. Nellis, T. Mashimo et al., “Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals,” Sci. Rep. 6, 26000 (2016).10.1038/srep26000
|
[44] |
W. J. Nellis, “Warm dense matter at shock pressures up to 20 TPa (200 Mbar),” in Ultracondensed Matter by Dynamic Compression (Cambridge University Press, Cambridge, UK, 2017), pp. 130–138.
|
[45] |
J. D. Johnson, “Bound and estimate for the maximum compression of single shocks,” Phys. Rev. E 59, 3727 (1999).10.1103/physreve.59.3727
|
[46] |
N. N. Kalitkin, L. V. Kuzmina, and A. I. Funtikov, “The main Hugoniots of 10 metals,” Mat. Model. 14(10), 27 (2002).
|
[47] |
E. S. Ivanchenko, N. N. Kalitkin, and L. V. Kuz’mina, “Main Hugoniot adiabats in the tefis database of thermophysical properties of substances (TEFIS),” Math. Models Comput. Simul. 1, 383 (2009).10.1134/s2070048209030053
|
[48] |
LASL Shock Hugoniot Data, edited by S. P. Marsh (University of California Press, Berkeley; Los Angeles; London, 1980).
|
[49] |
S. A. Thomas, R. S. Hixson, M. C. Hawkins, and O. T. Strand, “Wave speeds in single-crystal and polycrystalline copper,” Int. J. Impact Eng. 139, 103506 (2020).10.1016/j.ijimpeng.2020.103506
|
[50] |
M. Sims et al., “Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions,” J. Appl. Phys. 132, 075902 (2022).10.1063/5.0088607
|
[51] |
P. R. Levashov, K. V. Khishchenko, I. V. Lomonosov, and V. E. Fortov, “Database on shock-wave experiments and equations of state available via internet,” AIP Conf. Proc. 706, 87 (2004).10.1063/1.1780190
|
[52] |
M. A. Kadatskiy and K. V. Khishchenko, “Theoretical investigation of the shock compressibility of copper in the average-atom approximation,” Phys. Plasmas 25, 112701 (2018).10.1063/1.5050248
|
[53] | |
[54] |
N. M. Gill and C. E. Starrett, “Tartarus: A relativistic Green’s function quantum average atom code,” High Energy Density Phys. 24, 33–38 (2017).10.1016/j.hedp.2017.06.002
|
[55] | |
[56] |
V. P. Kopyshev, Equations of State Theory (RFNC-VNIIEF, Sarov, 2009) (in Russian);
|
[57] |
D. C. Wallace, “Nature of the process of overdriven shocks in metals,” Phys. Rev. B 24, 5607 (1981).10.1103/physrevb.24.5607
|
[58] |
K. R. Cochrane et al., “Platinum equation of state to greater than two terapascals: Experimental data and analytical models,” Phys. Rev. B 105, 224109 (2022).10.1103/physrevb.105.224109
|
[59] |
L. R. Veeser, J. C. Solem, and A. J. Lieber, “Impedance-match experiments using laser-driven shock waves,” Appl. Phys. Lett. 35(10), 761 (1979).10.1063/1.90961
|
[60] |
H. C. Pant et al., “Laser driven shock wave experiments for equation of state studies at megabar pressures,” J. Phys.: Condens. Matter 14, 10787 (2002).10.1088/0953-8984/14/44/378
|
[61] |
S. Root et al., “Argon equation of state data to 1 TPa: Shock compression experiments and simulations,” Phys. Rev. B 106, 174114 (2022).10.1103/physrevb.106.174114
|
[62] |
L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley Publishing Company, Reading, PA, 1969).
|
[63] |
K. Nagayama and Y. Mori, “Simple method of calculating Grüneisen parameter based on the shock Hugoniot data for solids,” J. Phys. Soc. Jpn. 63, 4070 (1994).10.1143/jpsj.63.4070
|
[64] |
R. H. Joshi et al., “Grüneisen parameter and equations of states for copper—High pressure study,” Comput. Condens. Matter 15, 79 (2018).10.1016/j.cocom.2017.11.003
|
[65] |
L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, “Isotherms and Grüneisen functions for 25 metals,” J. Appl. Mech. Tech. Phys. 28, 129 (1987).10.1007/BF00918785
|
[66] |
C. W. Greeff, J. C. Boettger, M. J. Graf, and J. D. Johnson, “Theoretical investigation of the Cu EOS standard,” J. Phys. Chem. Solids 67, 2033 (2006).10.1016/j.jpcs.2006.05.055
|
[67] |
N. Yu. Orlov, M. A. Kadatskiy, O. B. Denisov, and K. V. Khishchenko, “Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas,” Matter Radiat. Extremes 4, 054403 (2019).10.1063/1.5096439
|
[68] |
M. A. Kadatskiy and K. V. Khishchenko, “Shock compressibility of iron calculated in the framework of quantum-statistical models with different ionic parts,” J. Phys.: Conf. Ser. 774, 012005 (2016).10.1088/1742-6596/774/1/012005
|
[69] |
M. A. Kadatskiy and K. V. Khishchenko, “Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models,” J. Phys.: Conf. Ser. 653, 012079 (2015).10.1088/1742-6596/653/1/012079
|
[70] |
S. D. Ramsey et al., “Converging shock flows for a Mie-Grüneisen equation of state,” Phys. Fluids 30, 046101 (2018).10.1063/1.5018323
|
[71] |
F. de Gasperin et al., “MeerKAT view of the diffuse radio sources in Abell 3667 and their interactions with the thermal plasma,” Astron. Astrophys. 659, A146 (2022).10.1051/0004-6361/202142658
|