Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Burakovsky Leonid, Preston Dean L., Ramsey Scott D., Starrett Charles E., Baty Roy S.. Shock standards Cu, Ag, Ir, and Pt in a wide pressure range[J]. Matter and Radiation at Extremes, 2023, 8(4): 046901. doi: 10.1063/5.0124555
Citation: Burakovsky Leonid, Preston Dean L., Ramsey Scott D., Starrett Charles E., Baty Roy S.. Shock standards Cu, Ag, Ir, and Pt in a wide pressure range[J]. Matter and Radiation at Extremes, 2023, 8(4): 046901. doi: 10.1063/5.0124555

Shock standards Cu, Ag, Ir, and Pt in a wide pressure range

doi: 10.1063/5.0124555
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: burakov@lanl.gov
  • Received Date: 2022-09-06
  • Accepted Date: 2023-04-18
  • Available Online: 2023-07-01
  • Publish Date: 2023-07-01
  • Although they are polymorphic (multiphase) materials, both copper and silver are reliable Hugoniot standards, and thus it is necessary to establish an accurate analytic model of their principal Hugoniots. Here we present analytic forms of their principal Hugoniots, as well as those of iridium and platinum, two “pusher” standards for shock-ramp experiments, over a wide range of pressures. They are based on our new analytic model of the principal Hugoniot [Burakovsky et al., J. Appl. Phys. 132 , 215109 (2022)]. Comparison of the four Hugoniots with experimental and independent theoretical data (such data exist to very high pressures for both copper and silver) demonstrates excellent agreement. Hence, the new model for copper and silver can be considered as providing the corresponding Hugoniot standards over a wide pressure range. We also suggest an approach for calculating the Grüneisen parameter along the Hugoniot and apply it to copper as a prototype, and our results appear to be in good agreement with the available data.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Leonid Burakovsky: Investigation (lead); Writing – original draft (lead); Writing – review & editing (equal). Dean L. Preston: Formal analysis (equal); Investigation (equal); Writing – review & editing (equal). Scott D. Ramsey: Investigation (equal); Project administration (equal); Writing – review & editing (equal). Charles E. Starrett: Investigation (equal); Writing – review & editing (equal). Roy S. Baty: Investigation (equal); Project administration (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    J. W. Forbes, “Impedance matching technique,” in Shock Wave Compression of Condensed Matter, Shock Wave and High Pressure Phenomena (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 31–57.
    [2]
    J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, “Shock-wave compressions of twenty-seven metals. Equations of state of metals,” Phys. Rev. 108, 196 (1957).10.1103/physrev.108.196
    [3]
    R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31, 1253 (1960).10.1063/1.1735815
    [4]
    L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev, V. I. Zhuchikhin, and M. I. Brazhnik, “Dynamic compressibility and equation of state of iron under high pressure,” Sov. Phys. JETP 34, 606 (1958).
    [5]
    A. I. Funtikov, “Phase diagram and melting curve of iron obtained using the data of static and shock-wave measurements,” High Temp. 41, 850 (2003).10.1023/b:hite.0000008344.89730.69
    [6]
    J. M. Brown and R. G. McQueen, “Melting of iron under core conditions,” Geophys. Res. Lett. 7, 533, (1980).10.1029/gl007i007p00533
    [7]
    J. M. Brown and R. G. McQueen, “Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa,” J. Geophys. Res. 91, 7485, (1986).10.1029/jb091ib07p07485
    [8]
    B. K. Godwal, F. González-Cataldo, A. K. Verma, L. Stixrude, and R. Jeanloz, “Stability of iron crystal structures at 0.3–1.5 TPa,” Earth Planet. Sci. Lett. 409, 299 (2015).10.1016/j.epsl.2014.10.056
    [9]
    A. S. Vladimirov, N. P. Voloshin, V. N. Nogin, A. V. Petrovtsev, and V. A. Simonenko, “Shock compressibility of aluminum at p ≳ 1 Gbar,” JETP Lett 39, 82 (1984).
    [10]
    D. N. Polsin et al., “Measurement of body-centered-cubic aluminum at 475 GPa,” Phys. Rev. Lett. 119, 175702 (2017);10.1103/physrevlett.119.175702
    [11]
    Yu. B. Kudasov et al., “Lattice dynamics and phase diagram of aluminum at high temperatures,” J. Exp. Theor. Phys. 117, 664 (2013).10.1134/s1063776113100038
    [12]
    S. R. Baty, L. Burakovsky, and D. Errandonea, “Ab initio phase diagram of copper,” Crystals 11, 537 (2021).10.3390/cryst11050537
    [13]
    S. R. Baty, L. Burakovsky, and D. Errandonea, “Ab initio phase diagram of silver,” J. Phys.: Condens. Matter 33, 485901 (2021).10.1088/1361-648x/ac23fb
    [14]
    [15]
    M. D. Knudson, “Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments,” AIP Conf. Proc. 1426, 35 (2012).10.1063/1.3686216
    [16]
    L. Burakovsky, S. P. Chen, D. L. Preston, and D. G. Sheppard, “Z methodology for phase diagram studies: Platinum and tantalum as examples,” J. Phys.: Conf. Ser. 500, 162001 (2014).10.1088/1742-6596/500/16/162001
    [17]
    L. Burakovsky et al., “Ab initio phase diagram of iridium,” Phys. Rev. B 94, 094112 (2016).10.1103/physrevb.94.094112
    [18]
    [19]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673, (1986).10.1029/jb091ib05p04673
    [20]
    W. J. Carter, S. P. Marsh, J. N. Fritz, and R. G. McQueen, Accurate Characterization of the High-Pressure Environment, NBS Special Publication Vol. 326 (National Bureau of Standards, 1971), p. 147.
    [21]
    I. V. Lomonosov and S. V. Fortova, “Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes,” High Temp. 55, 585 (2017).10.1134/s0018151x17040113
    [22]
    M. K. Wallace, J. M. Winey, and Y. M. Gupta, “Shock compression of silver to 300 GPa: Wave profile measurements and melting transition,” Phys. Rev. B 104, 014101 (2021).10.1103/physrevb.104.014101
    [23]
    C. A. McCoy, M. D. Knudson, and S. Root, “Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures,” Phys. Rev. B 96, 174109 (2017).10.1103/physrevb.96.174109
    [24]
    H. Liu et al., “Validation for equation of state in wide regime: Copper as prototype,” Matter Radiat. Extremes 1, 123 (2016).10.1016/j.mre.2016.03.002
    [25]
    M. Guinan and D. Steinberg, “A simple approach to extrapolating measured polycrystalline shear moduli to very high pressure,” J. Phys. Chem. Solids 36, 829 (1975).10.1016/0022-3697(75)90109-2
    [26]
    N. N. Kalitkin and L. V. Kuz’mina, “Copper as a shockwave standard,” Dokl. Phys. 43, 276 (1998).
    [27]
    M. C. Marshall et al., “Developing quartz and molybdenum as impedance-matching standards in the 100-Mbar regime,” Phys. Rev. B 99, 174101 (2019).10.1103/physrevb.99.174101
    [28]
    D. G. Hicks et al., “Shock compression of quartz in the high-pressure fluid regime,” Phys. Plasmas 12, 082702 (2005).10.1063/1.2009528
    [29]
    M. D. Knudson and M. P. Desjarlais, “Shock compression of quartz to 1.6 TPa: Redefining a pressure standard,” Phys. Rev. Lett. 103, 225501 (2009).10.1103/physrevlett.103.225501
    [30]
    M. D. Knudson and M. P. Desjarlais, “Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime,” Phys. Rev. B 88, 184107 (2013).10.1103/physrevb.88.184107
    [31]
    S. Root, J. P. Townsend, and M. D. Knudson, “Shock compression of fused silica: An impedance matching standard,” J. Appl. Phys. 126, 165901 (2019).10.1063/1.5126205
    [32]
    L. Burakovsky, D. L. Preston, S. D. Ramsey, and R. S. Baty, “Analytic model of principal Hugoniot at all pressures,” J. Appl. Phys. 132, 215109 (2022).10.1063/5.0121445
    [33]
    N. N. Kalitkin and L. V. Kuzmina, “Quantum-statistical Hugoniots of porous substances,” Mat. Model. 10(7), 111 (1998).
    [34]
    N. N. Kalitkin and L. V. Kuzmina, “Wide-range characteristic thermodynamic curves,” in High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, edited by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Springer-Verlag, New York, 2004), p. 116.
    [35]
    N. N. Kalitkin and L. V. Kuzmina, “Shock Hugoniots of 83 substances,” Chem. Phys. Rep. 18, 1913 (2000).
    [36]
    [37]
    [38]
    J. D. Johnson, “The features of the principal Hugoniot,” AIP Conf. Proc. 429, 27 (1998).10.1063/1.55632
    [39]
    [40]
    R. W. Gómez, “A simple model to calculate total and ionization energies of any atom,” Eur. J. Phys. 40, 015403 (2019).10.1088/1361-6404/aaea81
    [41]
    [42]
    L. V. Al’tshuler, N. N. Kalitkin, L. V. Kuz’mina, and B. S. Chekin, “Shock adiabats for ultrahigh pressures,” Sov. Phys. JETP 45, 167 (1977).
    [43]
    N. Ozaki, W. J. Nellis, T. Mashimo et al., “Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals,” Sci. Rep. 6, 26000 (2016).10.1038/srep26000
    [44]
    W. J. Nellis, “Warm dense matter at shock pressures up to 20 TPa (200 Mbar),” in Ultracondensed Matter by Dynamic Compression (Cambridge University Press, Cambridge, UK, 2017), pp. 130–138.
    [45]
    J. D. Johnson, “Bound and estimate for the maximum compression of single shocks,” Phys. Rev. E 59, 3727 (1999).10.1103/physreve.59.3727
    [46]
    N. N. Kalitkin, L. V. Kuzmina, and A. I. Funtikov, “The main Hugoniots of 10 metals,” Mat. Model. 14(10), 27 (2002).
    [47]
    E. S. Ivanchenko, N. N. Kalitkin, and L. V. Kuz’mina, “Main Hugoniot adiabats in the tefis database of thermophysical properties of substances (TEFIS),” Math. Models Comput. Simul. 1, 383 (2009).10.1134/s2070048209030053
    [48]
    LASL Shock Hugoniot Data, edited by S. P. Marsh (University of California Press, Berkeley; Los Angeles; London, 1980).
    [49]
    S. A. Thomas, R. S. Hixson, M. C. Hawkins, and O. T. Strand, “Wave speeds in single-crystal and polycrystalline copper,” Int. J. Impact Eng. 139, 103506 (2020).10.1016/j.ijimpeng.2020.103506
    [50]
    M. Sims et al., “Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions,” J. Appl. Phys. 132, 075902 (2022).10.1063/5.0088607
    [51]
    P. R. Levashov, K. V. Khishchenko, I. V. Lomonosov, and V. E. Fortov, “Database on shock-wave experiments and equations of state available via internet,” AIP Conf. Proc. 706, 87 (2004).10.1063/1.1780190
    [52]
    M. A. Kadatskiy and K. V. Khishchenko, “Theoretical investigation of the shock compressibility of copper in the average-atom approximation,” Phys. Plasmas 25, 112701 (2018).10.1063/1.5050248
    [53]
    [54]
    N. M. Gill and C. E. Starrett, “Tartarus: A relativistic Green’s function quantum average atom code,” High Energy Density Phys. 24, 33–38 (2017).10.1016/j.hedp.2017.06.002
    [55]
    [56]
    V. P. Kopyshev, Equations of State Theory (RFNC-VNIIEF, Sarov, 2009) (in Russian);
    [57]
    D. C. Wallace, “Nature of the process of overdriven shocks in metals,” Phys. Rev. B 24, 5607 (1981).10.1103/physrevb.24.5607
    [58]
    K. R. Cochrane et al., “Platinum equation of state to greater than two terapascals: Experimental data and analytical models,” Phys. Rev. B 105, 224109 (2022).10.1103/physrevb.105.224109
    [59]
    L. R. Veeser, J. C. Solem, and A. J. Lieber, “Impedance-match experiments using laser-driven shock waves,” Appl. Phys. Lett. 35(10), 761 (1979).10.1063/1.90961
    [60]
    H. C. Pant et al., “Laser driven shock wave experiments for equation of state studies at megabar pressures,” J. Phys.: Condens. Matter 14, 10787 (2002).10.1088/0953-8984/14/44/378
    [61]
    S. Root et al., “Argon equation of state data to 1 TPa: Shock compression experiments and simulations,” Phys. Rev. B 106, 174114 (2022).10.1103/physrevb.106.174114
    [62]
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley Publishing Company, Reading, PA, 1969).
    [63]
    K. Nagayama and Y. Mori, “Simple method of calculating Grüneisen parameter based on the shock Hugoniot data for solids,” J. Phys. Soc. Jpn. 63, 4070 (1994).10.1143/jpsj.63.4070
    [64]
    R. H. Joshi et al., “Grüneisen parameter and equations of states for copper—High pressure study,” Comput. Condens. Matter 15, 79 (2018).10.1016/j.cocom.2017.11.003
    [65]
    L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, “Isotherms and Grüneisen functions for 25 metals,” J. Appl. Mech. Tech. Phys. 28, 129 (1987).10.1007/BF00918785
    [66]
    C. W. Greeff, J. C. Boettger, M. J. Graf, and J. D. Johnson, “Theoretical investigation of the Cu EOS standard,” J. Phys. Chem. Solids 67, 2033 (2006).10.1016/j.jpcs.2006.05.055
    [67]
    N. Yu. Orlov, M. A. Kadatskiy, O. B. Denisov, and K. V. Khishchenko, “Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas,” Matter Radiat. Extremes 4, 054403 (2019).10.1063/1.5096439
    [68]
    M. A. Kadatskiy and K. V. Khishchenko, “Shock compressibility of iron calculated in the framework of quantum-statistical models with different ionic parts,” J. Phys.: Conf. Ser. 774, 012005 (2016).10.1088/1742-6596/774/1/012005
    [69]
    M. A. Kadatskiy and K. V. Khishchenko, “Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models,” J. Phys.: Conf. Ser. 653, 012079 (2015).10.1088/1742-6596/653/1/012079
    [70]
    S. D. Ramsey et al., “Converging shock flows for a Mie-Grüneisen equation of state,” Phys. Fluids 30, 046101 (2018).10.1063/1.5018323
    [71]
    F. de Gasperin et al., “MeerKAT view of the diffuse radio sources in Abell 3667 and their interactions with the thermal plasma,” Astron. Astrophys. 659, A146 (2022).10.1051/0004-6361/202142658
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (44) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return