Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Ruyer C., Loiseau P., Riazuelo G., Riquier R., Debayle A., Masson-Laborde P. E., Morice O.. Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions[J]. Matter and Radiation at Extremes, 2023, 8(2): 025901. doi: 10.1063/5.0124360
Citation: Ruyer C., Loiseau P., Riazuelo G., Riquier R., Debayle A., Masson-Laborde P. E., Morice O.. Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions[J]. Matter and Radiation at Extremes, 2023, 8(2): 025901. doi: 10.1063/5.0124360

Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions

doi: 10.1063/5.0124360
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: charles.ruyer@cea.fr
  • Received Date: 2022-09-05
  • Accepted Date: 2022-12-24
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows. Based on a Gaussian description of speckles, the model includes spatial, temporal, and polarization smoothing techniques, through fits coming from hydrodynamic simulations with a paraxial description of electromagnetic waves. This beam bending model is then incorporated into a ray tracing algorithm and carefully validated. When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility (NIF) experiment, the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition, and could explain some anomalous refraction measurements, namely, the so-called glint observed in some NIF experiments.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    C. Ruyer: Conceptualization (lead); Investigation (lead); Methodology (lead); Software (equal); Validation (equal); Writing – original draft (lead); Writing – review & editing (equal). P. Loiseau: Conceptualization (supporting); Methodology (supporting); Software (equal); Writing – review & editing (equal). G. Riazuelo: Software (equal); Validation (equal); Writing – original draft (supporting); Writing – review & editing (equal). R. Riquier: Software (equal); Writing – original draft (supporting); Writing – review & editing (supporting). A. Debayle: Conceptualization (supporting); Methodology (supporting); Writing – review & editing (equal). P. E. Masson-Laborde: Conceptualization (supporting); Methodology (supporting); Writing – review & editing (supporting). O. Morice: Writing – review & editing (supporting).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    To validate the predictions of Sec. II C, five 3D Hera simulations of Gaussian beams have been performed with a wavelength of λ0 = 0.35 μm, a maximum intensity of I0 = 1015 W/cm2 and an f-number f = 8. The homogeneous fully ionized carbon plasma at 10% of the critical density has a drift velocity along the y direction at a Mach number M0 = 0.4, 0.8, 1, 1.2, or 1.5, with (Te, Ti) = (2.5, 1) keV. The size of the simulation domain is Lx × Ly × Lz = 100 µm × (40 µm)2 and is composed of 50 × 5122 meshes. The laser is injected from the left boundary at x = 0, and its focal spot is located at (xfoc, yfoc, zfoc) = (50 µm, 0, 0). The laser has a constant temporal profile preceded by a 1 ps-long linear rise. Additionally, the Landau damping operator is calculated in the Fourier space transverse to the main laser direction,50,68,69 and the thermal correction of Eq. (10) (while setting Ω = 1) is accounted for.
    The resulting intensity profiles at t = 10 ps, illustrated in Fig. 6, reveal a deviation of the beam toward the flow (y) direction. The theoretical predictions of Sec. II C, which we aim at validating here, gather all the x dependence of the bending rate into the fitting factor S. Hence, a comparison of the 3D Hera predictions with Eq. (19) requires that we remove from the simulation results the influence of the x-Gaussian laser profile. We thus start by isolating the x-dependent factors (waist and intensity), leading in 3D todθdxd2ydx2=1[1+(xxfoc)2/zc2]3/2dθ0dx,where zc=πf2λ0, and 0/dx is the part of the beam bending rate that is independent of x, thus corresponding to Eq. (16). Hence, for /dx(x = 0) = y(x = 0) = 0, the deviation is related to 0/dx throughy1[1+(Lxxfoc)2/zc2]1/2Lx22dθ0dx.The value S = 1, imposed in Sec. II C, corresponds to a deviation that reads y0=0.5Lx2dθ0/dx. In summary, to extract the relevant time-averaged centroid deviation from our 3D Hera simulation, we first compute the centroid deviation ⟨y at the exit plane [using Eq. (2)], divide it by the factor [1+(Lxxfoc)2/zc2]1/20.81, and average the results between t0 and t0 + 7 ps. We use t0 = 1.3 ps here to account for the time required for the laser to reach the exit plane of the simulation (∼0.3 ps) and the 1 ps linear rise of the laser time envelope.
    Equation (B2) has been derived using the small-amplitude density and temperature hypothesis, namely, dne/ne ≪ 1 and dTe/Te ≪ 1, and the quasistationary temperature hypothesis, namely, dt(Te) < νeiI0/cnc. In our simulations, the laser propagates into a 2 mm helium plasma that is assumed to be uniform with density ne(t = 0) = 0.1nc, Te = 2 keV, and Ti = 0.5 keV. The Landau damping rate has been determined by a kinetic dispersion solver, and its value is γ0 = 0.031. The laser’s average intensity is ⟨I0⟩ = 2 × 1014 W/cm2. This relatively small value has been chosen to limit the angular spread of the beam. The transverse and longitudinal mesh sizes are dy = dz = 0.75λ0 (for λ0.35 µm) and dx = 1.6 µm, respectively.
    In the case of PS smoothing, the code models the propagation of two independent electromagnetic waves (the first polarized along the y axis and the second along the z axis), but the source term in Eq. (B2) is computed with the contributions of both electromagnetic waves.
    The Parax code simulates the propagation of electromagnetic waves in a plasma.88 The propagation of one fixed polarization electromagnetic wave is modeled by a single generalized scalar paraxial equation (B1) for the electric field amplitude E and a wave equation (B2) for the plasma response in the perpendicular (y, z) plane:2iω0c2t+2ik0ηx+ixk0η+2ω02c2nene0ncνeiω0ne0c2ncE=0.Here, νei is the electron–ion collision frequency. Stimulated Raman and Brillouin backscattering do not occur, owing to the presence of a single paraxial incident wave. However, both filamentation and forward stimulated Brillouin scattering (FSBS) can grow and interact. The plasma density is modeled using a fluid description, where expansion to second order in the field perturbation leads to an ion-acoustic wave driven by ponderomotive and thermal effects:88,89(t+ν+vyy)2cs22lognene0=Zicminc2(AtI).Here, vy represents a transverse plasma drift assumed to be along the y axis, and ν is the ion-acoustic wave damping rate. The logarithm saturates the density response and thus impedes the blowup of the self-focusing process that would otherwise be induced by the cubically nonlinear Schrödinger equation derived from Eq. (B1). Equation (B2) uses the acoustic type of plasma response and accounts for the plasma heating using a nonlocal electron transport model according to Ref. 59. The operator At in the source term is applied to the laser intensity; it accounts for the inverse bremsstrahlung heating, the ponderomotive effect, and the nonlocal transport. Its spectrum in Fourier space for the transverse spatial coordinates (y, z) uses the fit introduced in Ref. 59.
    Troll is a 3D arbitrary Lagrangian–Eulerian (ALE) radiative hydrodynamic code with unstructured mesh.38 The simulation presented in Sec. IV B was performed in an axisymmetric 2D geometry. We used the latest CEA tabulated equations for state and opacities, with a model for NLTE correction of the emissivity. The radiation transport was solved using an implicit Monte Carlo method and the heat flux using the Spitzer–Härm model, limited to 10% of the freestreaming flux. The lasers were simulated using the classical 3D ray tracing method (without the beam bending model), with inverse bremsstrahlung absorption, corrected to account for the Langdon effect. Both Raman and Brillouin backscattering were measured to be just a few percent, and therefore were not taken into account. No multipliers were used on the incident laser power.
    In order to facilitate the implementation of the present beam bending model in a hydrodynamic code, we introduce here a fit of the function GτSSD [Eq. (23)] that appears in the ray tracing model of Eq. (24). We propose to use the following function defined in the domain M0 > 0, with kc = 21/2/fλ0, G3=Akc2aM0+bM021+(M0/c)4where a, b and c are polynomial functions of τSSDcs/fλ0 and γ0. They follow,a=n=03m=04an,mγ0nτSSDcsfλ0m,b=n=03m=04bn,mγ0nτSSDcsfλ0m,c=n=03m=04cn,mγ0nτSSDcsfλ0m.The value of the coefficients an,m, bn,m, cn,m are given in Table I. We retain the predictions of the above fit when G3(M0)>0 and set it to zero elsewhere. We also use G3(M0)=G3(M0) in the negative Mach number domain. As shown in Fig. 7, this fit works fairly correctly in the domain 0.007 ≤ γ0 ≤ 0.05, |M0| < 2.53 and 0.1 ≤ τSSDcs/fλ0 ≤ 2 in a mono-species plasma, as shown in Figs. 7(a)7(d).
  • loading
  • [1]
    R. P. Drake, “Introduction to high-energy-density physics,” in High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, edited by L. Davison and Y. Horie (Springer, Berlin, Heidelberg, 2006), pp. 1–17.
    [2]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [3]
    C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Controlled Fusion 47, B389–B403 (2005).10.1088/0741-3335/47/12b/s28
    [4]
    K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao, L. Hao, S. Li, G. Ren, W. Jiang, C. Yin, C. Sun, Z. Chen, T. Huang, X. Xie, S. Li, W. Miao, X. Hu, Q. Tang, Z. Song, J. Chen, Y. Xiao, X. Che, B. Deng, Q. Wang, K. Deng, Z. Cao, X. Peng, X. Liu, X. He, J. Yan, Y. Pu, S. Tu, Y. Yuan, B. Yu, F. Wang, J. Yang, S. Jiang, L. Gao, J. Xie, W. Zhang, Y. Liu, Z. Zhang, H. Zhang, Z. He, K. Du, L. Wang, X. Chen, W. Zhou, X. Huang, H. Guo, K. Zheng, Q. Zhu, W. Zheng, W. Y. Huo, X. Hang, K. Li, C. Zhai, H. Xie, L. Li, J. Liu, Y. Ding, and W. Zhang, “First inertial confinement fusion implosion experiment in octahedral spherical hohlraum,” Phys. Rev. Lett. 127, 245001 (2021).10.1103/physrevlett.127.245001
    [5]
    Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).10.1103/physrev.137.a1787
    [6]
    D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Nonlinear behavior of stimulated Brillouin and Raman scattering in laser-irradiated plasmas,” Phys. Rev. Lett. 30, 739 (1973).10.1103/physrevlett.30.739
    [7]
    Z. J. Liu, S.-p. Zhu, L. H. Cao, C. Y. Zheng, X. T. He, and Y. Wang, “Enhancement of backward Raman scattering by electron-ion collisions,” Phys. Plasmas 16, 112703 (2009).10.1063/1.3258839
    [8]
    L. Hao, Z. J. Liu, X. Y. Hu, and C. Y. Zheng, “Competition between the stimulated Raman and Brillouin scattering under the strong damping condition,” Laser Part. Beams 31, 203–209 (2013).10.1017/s0263034613000074
    [9]
    L. Hao, X. Y. Hu, C. Y. Zheng, B. Li, J. Xiang, and Z. J. Liu, “Study of crossed-beam energy transfer process with large crossing angle in three-dimension,” Laser Part. Beams 34, 270–275 (2016).10.1017/s0263034616000082
    [10]
    D. F. DuBois, D. A. Russell, and H. A. Rose, “Saturation spectra of the two-plasmon decay instability,” Phys. Rev. Lett. 74, 3983 (1995).10.1103/physrevlett.74.3983
    [11]
    D. A. Russell and D. F. DuBois, “32ω0radiation from the laser-driven two-plasmon decay instability in an inhomogeneous plasma,” Phys. Rev. Lett. 86, 428 (2001).10.1103/physrevlett.86.428
    [12]
    D. F. DuBois, B. Bezzerides, and H. A. Rose, “Collective parametric instabilities of many overlapping laser beams with finite bandwidth,” Phys. Fluids B 4, 241–251 (1992).10.1063/1.860439
    [13]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, and X. T. He, “Linear theory of multibeam parametric instabilities in homogeneous plasmas,” Phys. Plasmas 26, 062109 (2019).10.1063/1.5096850
    [14]
    J. Qiu, L. Hao, L. Cao, and S. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave,” Matter Radiat. Extremes 6, 065903 (2021).10.1063/5.0062902
    [15]
    W. G. Wagner, H. A. Haus, and J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).10.1103/physrev.175.256
    [16]
    Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057 (1984).10.1103/physrevlett.53.1057
    [17]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101
    [18]
    N. D. Delamater, T. J. Murphy, A. A. Hauer, R. L. Kauffman, A. L. Richard, E. L. Lindman, G. R. Magelssen, B. H. Wilde, D. B. Harris, B. A. Failor, J. Wallace, L. V. Powers, S. M. Pollaine, L. J. Suter, R. Chrien, T. D. Shepard, H. A. Rose, E. A. Williams, M. B. Nelson, M. D. Cable, J. B. Moore, M. A. Salazar, and K. Gifford, “Symmetry experiments in gas-filled hohlraums at NOVA,” Phys. Plasmas 3, 2022–2028 (1996).10.1063/1.871999
    [19]
    G. Huser, C. Courtois, and M.-C. Monteil, “Wall and laser spot motion in cylindrical hohlraums,” Phys. Plasmas 16, 032703 (2009).10.1063/1.3099054
    [20]
    R. Epstein and R. S. Craxton, “Statistical ray tracing in plasmas with random density fluctuations,” Phys. Rev. A 33, 1892–1902 (1986).10.1103/physreva.33.1892
    [21]
    J. D. Moody, B. J. MacGowan, D. E. Hinkel, W. L. Kruer, E. A. Williams, K. Estabrook, R. L. Berger, R. K. Kirkwood, D. S. Montgomery, and T. D. Shepard, “First optical observation of intensity dependent laser beam deflection in a flowing plasma,” Phys. Rev. Lett. 77, 1294–1297 (1996).10.1103/physrevlett.77.1294
    [22]
    A. Debayle, P.-E. Masson-Laborde, C. Ruyer, M. Casanova, and P. Loiseau, “Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime,” Phys. Plasmas 25, 052702 (2018).10.1063/1.5026187
    [23]
    M. Duluc, D. Penninckx, P. Loiseau, G. Riazuelo, A. Bourgeade, A. Chatagnier, and E. D’humières, “Comparison of longitudinal and transverse smoothing by spectral dispersion on stimulated Brillouin backscattering in inertial confinement fusion plasmas,” Phys. Plasmas 26, 042707 (2019).10.1063/1.5089113
    [24]
    L. Yin, B. J. Albright, D. J. Stark, W. D. Nystrom, R. F. Bird, and K. J. Bowers, “Saturation of cross-beam energy transfer for multispeckled laser beams involving both ion and electron dynamics,” Phys. Plasmas 26, 082708 (2019).10.1063/1.5111334
    [25]
    S. Hüller, G. Raj, W. Rozmus, and D. Pesme, “Crossed beam energy transfer in the presence of laser speckle ponderomotive self-focusing and nonlinear sound waves,” Phys. Plasmas 27, 022703 (2020).10.1063/1.5125759
    [26]
    S. Laffite and P. Loiseau, “Design of an ignition target for the laser megajoule, mitigating parametric instabilities,” Phys. Plasmas 17, 102704 (2010).10.1063/1.3489309
    [27]
    P. E. Masson-Laborde, M. C. Monteil, V. Tassin, F. Philippe, P. Gauthier, A. Casner, S. Depierreux, C. Neuville, B. Villette, S. Laffite, P. Seytor, P. Fremerye, W. Seka, D. Teychenné, A. Debayle, D. Marion, P. Loiseau, and M. Casanova, “Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums,” Phys. Plasmas 23, 022703 (2016).10.1063/1.4941706
    [28]
    K. Glize, C. Rousseaux, D. Bénisti, V. Dervieux, L. Gremillet, S. D. Baton, and L. Lancia, “Stimulated backward Raman scattering driven collectively by two picosecond laser pulses in a bi- or multi-speckle configuration,” Phys. Plasmas 24, 032708 (2017).10.1063/1.4978879
    [29]
    B. J. Winjum, A. Tableman, F. S. Tsung, and W. B. Mori, “Interactions of laser speckles due to kinetic stimulated Raman scattering,” Phys. Plasmas 26, 112701 (2019).10.1063/1.5110513
    [30]
    R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan, B. I. Cohen, C. H. Still, and E. A. Williams, “Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light,” Phys. Rev. Lett. 75, 1078 (1995).10.1103/physrevlett.75.1078
    [31]
    C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and E. A. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023 (2000).10.1063/1.874055
    [32]
    P. Loiseau, O. Morice, D. Teychenné, M. Casanova, S. Hüller, and D. Pesme, “Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma,” Phys. Rev. Lett. 97, 205001 (2006).10.1103/physrevlett.97.205001
    [33]
    S. Hüller, P. E. Masson-Laborde, D. Pesme, M. Casanova, F. Detering, and A. Maximov, “Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering,” Phys. Plasmas 13, 022703 (2006).10.1063/1.2168403
    [34]
    S. Hüller, G. Raj, M. Luo, W. Rozmus, and D. Pesme, “Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas,” Philos. Trans. R. Soc., A 378, 20200038 (2020).10.1098/rsta.2020.0038
    [35]
    M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8, 2275–2280 (2001).10.1063/1.1356740
    [36]
    Z. Qinghong, P. Wenbing, C. Juan, Y. Heng, and Z. Chuanlei, “Radiation hydrodynamics code LARED-H for laser fusion simulation,” in Competence in High Performance Computing 2010, edited by C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum (Springer, Berlin, Heidelberg, 2012), pp. 227–234.
    [37]
    H. Zhang, D. Yang, P. Song, S. Zou, Y. Zhao, S. Li, Z. Li, L. Guo, F. Wang, X. Peng, H. Wei, T. Xu, W. Zheng, P. Gu, W. Pei, S. Jiang, and Y. Ding, “X-ray conversion efficiency and radiation non-uniformity in the hohlraum experiments at Shenguang-III prototype laser facility,” Phys. Plasmas 21, 112709 (2014).10.1063/1.4901919
    [38]
    E. Lefebvre, S. Bernard, C. Esnault, P. Gauthier, A. Grisollet, P. Hoch, L. Jacquet, G. Kluth, S. Laffite, S. Liberatore, I. Marmajou, P.-E. Masson-Laborde, O. Morice, and J.-L. Willien, “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2018).10.1088/1741-4326/aacc9c
    [39]
    R. A. Egorchenkov and Y. A. Kravtsov, “Complex ray-tracing algorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650 (2001).10.1364/josaa.18.000650
    [40]
    A. Colaïtis, G. Duchateau, P. Nicolaï, and V. Tikhonchuk, “Towards modeling of nonlinear laser-plasma interactions with hydrocodes: The thick-ray approach,” Phys. Rev. E 89, 033101 (2014).10.1103/PhysRevE.89.033101
    [41]
    D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, C. A. Thomas, J. E. Ralph, J. D. Moody, and M. B. Schneider, “Interplay of laser-plasma interactions and inertial fusion hydrodynamics,” Phys. Rev. Lett. 118, 025002 (2017).10.1103/PhysRevLett.118.025002
    [42]
    A. Colaïtis, J. P. Palastro, R. K. Follett, I. V. Igumenschev, and V. Goncharov, “Real and complex valued geometrical optics inverse ray-tracing for inline field calculations,” Phys. Plasmas 26, 032301 (2019).10.1063/1.5082951
    [43]
    A. Debayle, C. Ruyer, O. Morice, P.-E. Masson-Laborde, P. Loiseau, and D. Benisti, “A unified modeling of wave mixing processes with the ray tracing method,” Phys. Plasmas 26, 092705 (2019).10.1063/1.5110247
    [44]
    D. E. Hinkel, E. A. Williams, and C. H. Still, “Laser beam deflection induced by transverse plasma flow,” Phys. Rev. Lett. 77, 1298–1301 (1996).10.1103/physrevlett.77.1298
    [45]
    M. Grech, V. T. Tikhonchuk, G. Riazuelo, and S. Weber, “Plasma induced laser beam smoothing below the filamentation threshold,” Phys. Plasmas 13, 093104 (2006).10.1063/1.2337791
    [46]
    M. Grech, G. Riazuelo, D. Pesme, S. Weber, and V. T. Tikhonchuk, “Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray,” Phys. Rev. Lett. 102, 155001 (2009).10.1103/physrevlett.102.155001
    [47]
    C. Rousseaux, K. Glize, S. D. Baton, L. Lancia, D. Bénisti, and L. Gremillet, “Experimental evidence of backward Raman scattering driven cooperatively by two picosecond laser pulses propagating side by side,” Phys. Rev. Lett. 117, 015002 (2016).10.1103/PhysRevLett.117.015002
    [48]
    D. E. Hinkel, E. A. Williams, R. L. Berger, L. V. Powers, A. B. Langdon, and C. H. Still, “Propagation of realistic beams in underdense plasma,” Phys. Plasmas 5, 1887–1894 (1998).10.1063/1.872859
    [49]
    B. Bezzerides, “Intrinsic bending of a laser beam in a flowing plasma,” Phys. Plasmas 5, 2712–2720 (1998).10.1063/1.872959
    [50]
    H. A. Rose, “Laser beam deflection by flow and nonlinear self-focusing,” Phys. Plasmas 3, 1709–1727 (1996).10.1063/1.871690
    [51]
    D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–681 (2000).10.1103/physrevlett.84.678
    [52]
    C. Ruyer, A. Debayle, P. Loiseau, M. Casanova, and P. E. Masson-Laborde, “Kinetic analytical modeling of Gaussian pulse beam-bending including the transient regime,” Phys. Plasmas 27, 102105 (2020).10.1063/5.0016214
    [53]
    G. Riazuelo and G. Bonnaud, “Coherence properties of a smoothed laser beam in a hot plasma,” Phys. Plasmas 7, 3841–3844 (2000).10.1063/1.1290447
    [54]
    O. A. Hurricane, P. T. Springer, P. K. Patel, D. A. Callahan, K. Baker, D. T. Casey, L. Divol, T. Döppner, D. E. Hinkel, M. Hohenberger, L. F. Berzak Hopkins, C. Jarrott, A. Kritcher, S. Le Pape, S. Maclaren, L. Masse, A. Pak, J. Ralph, C. Thomas, P. Volegov, and A. Zylstra, “Approaching a burning plasma on the NIF,” Phys. Plasmas 26, 052704 (2019).10.1063/1.5087256
    [55]
    A. L. Kritcher, D. T. Casey, C. A. Thomas, A. B. Zylstra, M. Hohenberger, K. Baker, S. Le Pape, B. Bachmann, S. Bhandarkar, J. Biener, T. Braun, D. Clark, L. Divol, T. Döppner, D. Hinkel, C. Kong, D. Mariscal, M. Millot, J. Milovich, A. Nikroo, A. Pak, N. Rice, H. Robey, M. Stadermann, J. Sevier, D. Strozzi, C. Weber, C. Wild, B. Woodworth, J. Edwards, D. A. Callahan, and O. A. Hurricane, “Symmetric fielding of the largest diamond capsule implosions on the NIF,” Phys. Plasmas 27, 052710 (2020).10.1063/5.0004221
    [56]
    A. B. Zylstra, D. T. Casey, A. Kritcher, L. Pickworth, B. Bachmann, K. Baker, J. Biener, T. Braun, D. Clark, V. Geppert-Kleinrath, M. Hohenberger, C. Kong, S. Le Pape, A. Nikroo, N. Rice, M. Rubery, M. Stadermann, D. Strozzi, C. Thomas, P. Volegov, C. Weber, C. Wild, C. Wilde, D. A. Callahan, and O. A. Hurricane, “Hot-spot mix in large-scale HDC implosions at NIF,” Phys. Plasmas 27, 092709 (2020).10.1063/5.0003779
    [57]
    M. Hohenberger, D. T. Casey, A. L. Kritcher, A. Pak, A. B. Zylstra, C. A. Thomas, K. L. Baker, S. Le Pape, B. Bachmann, R. L. Berger, J. Biener, D. S. Clark, L. Divol, T. Döppner, V. Geppert-Kleinrath, D. Hinkel, H. Huang, C. Kong, O. L. Landen, J. Milovich, A. Nikroo, N. Rice, H. Robey, M. Schoff, J. Sevier, K. Sequoia, M. Stadermann, D. Strozzi, P. L. Volegov, C. Weber, C. Wild, B. Woodworth, D. A. Callahan, and O. A. Hurricane, “Integrated performance of large HDC-capsule implosions on the National Ignition Facility,” Phys. Plasmas 27, 112704 (2020).10.1063/5.0019083
    [58]
    B. D. Fried, M. Gell-Mann, J. D. Jackson, and H. W. Wyld., “Longitudinal plasma oscillation in an electric field,” J. Nucl. Energy, Part C 1, 190 (1960).10.1088/0368-3281/1/4/302
    [59]
    A. V. Brantov, V. Y. Bychenkov, V. T. Tikhonchuk, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).10.1063/1.872962
    [60]
    V. Y. Bychenkov, W. Rozmus, A. V. Brantov, and V. T. Tikhonchuk, “Theory of filamentation instability and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511 (2000).10.1063/1.873970
    [61]
    R. L. Berger, E. J. Valeo, and S. Brunner, “The transition from thermally driven to ponderomotively driven stimulated Brillouin scattering and filamentation of light in plasma,” Phys. Plasmas 12, 062508 (2005).10.1063/1.1931089
    [62]
    M. Casanova, “Convenient computational forms for the frequency and damping of electrostatic waves in an unmagnetized plasma,” Laser Part. Beams 7, 165–171 (1989).10.1017/s0263034600005917
    [63]
    S. Ghosal and H. A. Rose, “Two-dimensional plasma flow past a laser beam,” Phys. Plasmas 4, 2376–2396 (1997).10.1063/1.872219
    [64]
    S. Ghosal and H. A. Rose, “Effect of induced spatial incoherence on flow induced laser beam deflection: Analytic theory,” Phys. Plasmas 4, 4189–4191 (1997).10.1063/1.872609
    [65]
    H. A. Rose and S. Ghosal, “Effect of smoothing by spectral dispersion on flow induced laser beam deflection: The random phase modulation scheme,” Phys. Plasmas 5, 775–781 (1998).10.1063/1.872763
    [66]
    F. Gilleron and R. Piron, “The fast non-LTE code DEDALE,” High Energy Density Phys. 17, 219–230 (2015).10.1016/j.hedp.2015.07.001
    [67]
    H. Jourdren, “HERA: A hydrodynamic AMR platform for multi-physics simulations,” in Adaptive Mesh Refinement—Theory and Applications, edited by T. Plewa, T. Linde, and V. Gregory Weirs (Springer, Berlin, Heidelberg, 2005), pp. 283–294.
    [68]
    R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams,” Phys. Plasmas 5, 4337–4356 (1998).10.1063/1.873171
    [69]
    P. E. Masson-Laborde, S. Hüller, D. Pesme, M. Casanova, P. Loiseau, and C. Labaune, “Modeling parametric scattering instabilities in large-scale expanding plasmas,” J. Phys. IV 133, 247–251 (2006).10.1051/jp4:2006133050
    [70]
    A. V. Maximov, I. G. Ourdev, D. Pesme, W. Rozmus, V. T. Tikhonchuk, and C. E. Capjack, “Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering,” Phys. Plasmas 8, 1319–1328 (2001).10.1063/1.1352056
    [71]
    L. Videau, C. Rouyer, J. Garnier, and A. Migus, “Motion of hot spots in smoothed beams,” J. Opt. Soc. Am. A 16, 1672 (1999).10.1364/josaa.16.001672
    [72]
    [73]
    D. Penninckx, H. Coïc, A. Leblanc, A. Chatagnier, A. Bourgeade, E. d’Humières, and P. Loiseau, “Impact of FM-AM conversion on smoothing by spectral dispersion,” Proc. SPIE 9345, 93450P (2015).10.1117/12.2078888
    [74]
    C. Huang, X. Lu, Y. Jiang, X. Wang, Z. Qiao, and W. Fan, “Real-time characterization of FM-AM modulation in a high-power laser facility using an RF-photonics system and a denoising algorithm,” Appl. Opt. 56, 1610–1615 (2017).10.1364/ao.56.001610
    [75]
    [76]
    A. Le Cain, G. Riazuelo, and J. M. Sajer, “Statistical spatio-temporal properties of the laser megajoule speckle,” Phys. Plasmas 19, 102704 (2012).10.1063/1.4757221
    [77]
    N. Lemos, W. A. Farmer, N. Izumi, H. Chen, E. Kur, A. Pak, B. B. Pollock, J. D. Moody, J. S. Ross, D. E. Hinkel, O. S. Jones, T. Chapman, N. B. Meezan, P. A. Michel, and O. L. Landen, “Specular reflections (‘glint’) of the inner beams in a gas-filled cylindrical hohlraum,” Phys. Plasmas 29, 092704 (2022).10.1063/5.0099937
    [78]
    H. Honda, H. Nishimura, S. Miyamoto, D. Ohnuki, K. Fujita, Y. Ochi, H. Miki, H. Takabe, S. Nakai, and K. Mima, “Influence of specularly reflected laser light on uniformity of implosion of indirect-drive fusion capsule,” Plasma Phys. Controlled Fusion 40, 1097–1104 (1998).10.1088/0741-3335/40/6/015
    [79]
    D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross, L. F. Berzak Hopkins, A. L. Kritcher, D. E. Hinkel, and J. D. Moody, “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001
    [80]
    A. L. Kritcher, D. Clark, S. Haan, S. A. Yi, A. B. Zylstra, D. A. Callahan, D. E. Hinkel, L. F. Berzak Hopkins, O. A. Hurricane, O. L. Landen, S. A. MacLaren, N. B. Meezan, P. K. Patel, J. Ralph, C. A. Thomas, R. Town, and M. J. Edwards, “Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators,” Phys. Plasmas 25, 056309 (2018).10.1063/1.5018000
    [81]
    M. Vandenboomgaerde, A. Grisollet, M. Bonnefille, J. Clérouin, P. Arnault, N. Desbiens, and L. Videau, “Hollow wall to stabilize and enhance ignition hohlraums,” Phys. Plasmas 25, 012713 (2018).10.1063/1.5008669
    [82]
    S. Depierreux, V. Tassin, D. Antigny, R. E. Bahr, N. Botrel, R. Bourdenet, G. DeDemo, L. DeLaval, O. Dubos, J. Fariaut, M. Ferri, T. Filkins, S. LeTacon, C. Sorce, B. Villette, and M. Vandenboomgaerde, “Experimental evidence of harnessed expansion of a high-Z plasma using the hollow wall design for indirect drive inertial confinement fusion,” Phys. Rev. Lett. 125, 255002 (2020).10.1103/physrevlett.125.255002
    [83]
    V. Yahia, P.-E. Masson-Laborde, S. Depierreux, C. Goyon, G. Loisel, C. Baccou, N. G. Borisenko, A. Orekhov, T. Rienecker, O. Rosmej, D. Teychenné, and C. Labaune, “Reduction of stimulated Brillouin backscattering with plasma beam smoothing,” Phys. Plasmas 22, 042707 (2015).10.1063/1.4918942
    [84]
    D. Turnbull, J. Katz, D. E. Hinkel, P. Michel, T. Chapman, L. Divol, E. Kur, S. MacLaren, A. L. Milder, M. Rosen, A. Shvydky, G. B. Zimmerman, and D. H. Froula, “Beam spray thresholds in ICF-relevant plasmas,” Phys. Rev. Lett. 129, 025001 (2022).10.1103/PhysRevLett.129.025001
    [85]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [86]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [87]
    A. Fusaro, P. Loiseau, D. Penninckx, G. Riazuelo, and R. Collin, “Improving stimulated Brillouin scattering mitigation in weakly-damped plasmas: From spectral dispersion to spectral distribution,” Nucl. Fusion 61, 126049 (2021).10.1088/1741-4326/ac31d9
    [88]
    P. Michel, C. Labaune, S. Weber, V. T. Tikhonchuk, G. Bonnaud, G. Riazuelo, and F. Walraet, “Studies of the laser filament instability in a semicollisional plasma,” Phys. Plasmas 10, 3545–3553 (2003).10.1063/1.1598204
    [89]
    F. Walraet, G. Riazuelo, and G. Bonnaud, “Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion,” Phys. Plasmas 10, 811 (2003).10.1063/1.1539472
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (57) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return