Citation: | Ruyer C., Loiseau P., Riazuelo G., Riquier R., Debayle A., Masson-Laborde P. E., Morice O.. Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions[J]. Matter and Radiation at Extremes, 2023, 8(2): 025901. doi: 10.1063/5.0124360 |
[1] |
R. P. Drake, “Introduction to high-energy-density physics,” in High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, edited by L. Davison and Y. Horie (Springer, Berlin, Heidelberg, 2006), pp. 1–17.
|
[2] |
J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
|
[3] |
C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Controlled Fusion 47, B389–B403 (2005).10.1088/0741-3335/47/12b/s28
|
[4] |
K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao, L. Hao, S. Li, G. Ren, W. Jiang, C. Yin, C. Sun, Z. Chen, T. Huang, X. Xie, S. Li, W. Miao, X. Hu, Q. Tang, Z. Song, J. Chen, Y. Xiao, X. Che, B. Deng, Q. Wang, K. Deng, Z. Cao, X. Peng, X. Liu, X. He, J. Yan, Y. Pu, S. Tu, Y. Yuan, B. Yu, F. Wang, J. Yang, S. Jiang, L. Gao, J. Xie, W. Zhang, Y. Liu, Z. Zhang, H. Zhang, Z. He, K. Du, L. Wang, X. Chen, W. Zhou, X. Huang, H. Guo, K. Zheng, Q. Zhu, W. Zheng, W. Y. Huo, X. Hang, K. Li, C. Zhai, H. Xie, L. Li, J. Liu, Y. Ding, and W. Zhang, “First inertial confinement fusion implosion experiment in octahedral spherical hohlraum,” Phys. Rev. Lett. 127, 245001 (2021).10.1103/physrevlett.127.245001
|
[5] |
Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).10.1103/physrev.137.a1787
|
[6] |
D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Nonlinear behavior of stimulated Brillouin and Raman scattering in laser-irradiated plasmas,” Phys. Rev. Lett. 30, 739 (1973).10.1103/physrevlett.30.739
|
[7] |
Z. J. Liu, S.-p. Zhu, L. H. Cao, C. Y. Zheng, X. T. He, and Y. Wang, “Enhancement of backward Raman scattering by electron-ion collisions,” Phys. Plasmas 16, 112703 (2009).10.1063/1.3258839
|
[8] |
L. Hao, Z. J. Liu, X. Y. Hu, and C. Y. Zheng, “Competition between the stimulated Raman and Brillouin scattering under the strong damping condition,” Laser Part. Beams 31, 203–209 (2013).10.1017/s0263034613000074
|
[9] |
L. Hao, X. Y. Hu, C. Y. Zheng, B. Li, J. Xiang, and Z. J. Liu, “Study of crossed-beam energy transfer process with large crossing angle in three-dimension,” Laser Part. Beams 34, 270–275 (2016).10.1017/s0263034616000082
|
[10] |
D. F. DuBois, D. A. Russell, and H. A. Rose, “Saturation spectra of the two-plasmon decay instability,” Phys. Rev. Lett. 74, 3983 (1995).10.1103/physrevlett.74.3983
|
[11] |
D. A. Russell and D. F. DuBois, “32ω0radiation from the laser-driven two-plasmon decay instability in an inhomogeneous plasma,” Phys. Rev. Lett. 86, 428 (2001).10.1103/physrevlett.86.428
|
[12] |
D. F. DuBois, B. Bezzerides, and H. A. Rose, “Collective parametric instabilities of many overlapping laser beams with finite bandwidth,” Phys. Fluids B 4, 241–251 (1992).10.1063/1.860439
|
[13] |
C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, and X. T. He, “Linear theory of multibeam parametric instabilities in homogeneous plasmas,” Phys. Plasmas 26, 062109 (2019).10.1063/1.5096850
|
[14] |
J. Qiu, L. Hao, L. Cao, and S. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave,” Matter Radiat. Extremes 6, 065903 (2021).10.1063/5.0062902
|
[15] |
W. G. Wagner, H. A. Haus, and J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).10.1103/physrev.175.256
|
[16] |
Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057 (1984).10.1103/physrevlett.53.1057
|
[17] |
S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101
|
[18] |
N. D. Delamater, T. J. Murphy, A. A. Hauer, R. L. Kauffman, A. L. Richard, E. L. Lindman, G. R. Magelssen, B. H. Wilde, D. B. Harris, B. A. Failor, J. Wallace, L. V. Powers, S. M. Pollaine, L. J. Suter, R. Chrien, T. D. Shepard, H. A. Rose, E. A. Williams, M. B. Nelson, M. D. Cable, J. B. Moore, M. A. Salazar, and K. Gifford, “Symmetry experiments in gas-filled hohlraums at NOVA,” Phys. Plasmas 3, 2022–2028 (1996).10.1063/1.871999
|
[19] |
G. Huser, C. Courtois, and M.-C. Monteil, “Wall and laser spot motion in cylindrical hohlraums,” Phys. Plasmas 16, 032703 (2009).10.1063/1.3099054
|
[20] |
R. Epstein and R. S. Craxton, “Statistical ray tracing in plasmas with random density fluctuations,” Phys. Rev. A 33, 1892–1902 (1986).10.1103/physreva.33.1892
|
[21] |
J. D. Moody, B. J. MacGowan, D. E. Hinkel, W. L. Kruer, E. A. Williams, K. Estabrook, R. L. Berger, R. K. Kirkwood, D. S. Montgomery, and T. D. Shepard, “First optical observation of intensity dependent laser beam deflection in a flowing plasma,” Phys. Rev. Lett. 77, 1294–1297 (1996).10.1103/physrevlett.77.1294
|
[22] |
A. Debayle, P.-E. Masson-Laborde, C. Ruyer, M. Casanova, and P. Loiseau, “Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime,” Phys. Plasmas 25, 052702 (2018).10.1063/1.5026187
|
[23] |
M. Duluc, D. Penninckx, P. Loiseau, G. Riazuelo, A. Bourgeade, A. Chatagnier, and E. D’humières, “Comparison of longitudinal and transverse smoothing by spectral dispersion on stimulated Brillouin backscattering in inertial confinement fusion plasmas,” Phys. Plasmas 26, 042707 (2019).10.1063/1.5089113
|
[24] |
L. Yin, B. J. Albright, D. J. Stark, W. D. Nystrom, R. F. Bird, and K. J. Bowers, “Saturation of cross-beam energy transfer for multispeckled laser beams involving both ion and electron dynamics,” Phys. Plasmas 26, 082708 (2019).10.1063/1.5111334
|
[25] |
S. Hüller, G. Raj, W. Rozmus, and D. Pesme, “Crossed beam energy transfer in the presence of laser speckle ponderomotive self-focusing and nonlinear sound waves,” Phys. Plasmas 27, 022703 (2020).10.1063/1.5125759
|
[26] |
S. Laffite and P. Loiseau, “Design of an ignition target for the laser megajoule, mitigating parametric instabilities,” Phys. Plasmas 17, 102704 (2010).10.1063/1.3489309
|
[27] |
P. E. Masson-Laborde, M. C. Monteil, V. Tassin, F. Philippe, P. Gauthier, A. Casner, S. Depierreux, C. Neuville, B. Villette, S. Laffite, P. Seytor, P. Fremerye, W. Seka, D. Teychenné, A. Debayle, D. Marion, P. Loiseau, and M. Casanova, “Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums,” Phys. Plasmas 23, 022703 (2016).10.1063/1.4941706
|
[28] |
K. Glize, C. Rousseaux, D. Bénisti, V. Dervieux, L. Gremillet, S. D. Baton, and L. Lancia, “Stimulated backward Raman scattering driven collectively by two picosecond laser pulses in a bi- or multi-speckle configuration,” Phys. Plasmas 24, 032708 (2017).10.1063/1.4978879
|
[29] |
B. J. Winjum, A. Tableman, F. S. Tsung, and W. B. Mori, “Interactions of laser speckles due to kinetic stimulated Raman scattering,” Phys. Plasmas 26, 112701 (2019).10.1063/1.5110513
|
[30] |
R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan, B. I. Cohen, C. H. Still, and E. A. Williams, “Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light,” Phys. Rev. Lett. 75, 1078 (1995).10.1103/physrevlett.75.1078
|
[31] |
C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and E. A. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023 (2000).10.1063/1.874055
|
[32] |
P. Loiseau, O. Morice, D. Teychenné, M. Casanova, S. Hüller, and D. Pesme, “Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma,” Phys. Rev. Lett. 97, 205001 (2006).10.1103/physrevlett.97.205001
|
[33] |
S. Hüller, P. E. Masson-Laborde, D. Pesme, M. Casanova, F. Detering, and A. Maximov, “Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering,” Phys. Plasmas 13, 022703 (2006).10.1063/1.2168403
|
[34] |
S. Hüller, G. Raj, M. Luo, W. Rozmus, and D. Pesme, “Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas,” Philos. Trans. R. Soc., A 378, 20200038 (2020).10.1098/rsta.2020.0038
|
[35] |
M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Phys. Plasmas 8, 2275–2280 (2001).10.1063/1.1356740
|
[36] |
Z. Qinghong, P. Wenbing, C. Juan, Y. Heng, and Z. Chuanlei, “Radiation hydrodynamics code LARED-H for laser fusion simulation,” in Competence in High Performance Computing 2010, edited by C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum (Springer, Berlin, Heidelberg, 2012), pp. 227–234.
|
[37] |
H. Zhang, D. Yang, P. Song, S. Zou, Y. Zhao, S. Li, Z. Li, L. Guo, F. Wang, X. Peng, H. Wei, T. Xu, W. Zheng, P. Gu, W. Pei, S. Jiang, and Y. Ding, “X-ray conversion efficiency and radiation non-uniformity in the hohlraum experiments at Shenguang-III prototype laser facility,” Phys. Plasmas 21, 112709 (2014).10.1063/1.4901919
|
[38] |
E. Lefebvre, S. Bernard, C. Esnault, P. Gauthier, A. Grisollet, P. Hoch, L. Jacquet, G. Kluth, S. Laffite, S. Liberatore, I. Marmajou, P.-E. Masson-Laborde, O. Morice, and J.-L. Willien, “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2018).10.1088/1741-4326/aacc9c
|
[39] |
R. A. Egorchenkov and Y. A. Kravtsov, “Complex ray-tracing algorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650 (2001).10.1364/josaa.18.000650
|
[40] |
A. Colaïtis, G. Duchateau, P. Nicolaï, and V. Tikhonchuk, “Towards modeling of nonlinear laser-plasma interactions with hydrocodes: The thick-ray approach,” Phys. Rev. E 89, 033101 (2014).10.1103/PhysRevE.89.033101
|
[41] |
D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, C. A. Thomas, J. E. Ralph, J. D. Moody, and M. B. Schneider, “Interplay of laser-plasma interactions and inertial fusion hydrodynamics,” Phys. Rev. Lett. 118, 025002 (2017).10.1103/PhysRevLett.118.025002
|
[42] |
A. Colaïtis, J. P. Palastro, R. K. Follett, I. V. Igumenschev, and V. Goncharov, “Real and complex valued geometrical optics inverse ray-tracing for inline field calculations,” Phys. Plasmas 26, 032301 (2019).10.1063/1.5082951
|
[43] |
A. Debayle, C. Ruyer, O. Morice, P.-E. Masson-Laborde, P. Loiseau, and D. Benisti, “A unified modeling of wave mixing processes with the ray tracing method,” Phys. Plasmas 26, 092705 (2019).10.1063/1.5110247
|
[44] |
D. E. Hinkel, E. A. Williams, and C. H. Still, “Laser beam deflection induced by transverse plasma flow,” Phys. Rev. Lett. 77, 1298–1301 (1996).10.1103/physrevlett.77.1298
|
[45] |
M. Grech, V. T. Tikhonchuk, G. Riazuelo, and S. Weber, “Plasma induced laser beam smoothing below the filamentation threshold,” Phys. Plasmas 13, 093104 (2006).10.1063/1.2337791
|
[46] |
M. Grech, G. Riazuelo, D. Pesme, S. Weber, and V. T. Tikhonchuk, “Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray,” Phys. Rev. Lett. 102, 155001 (2009).10.1103/physrevlett.102.155001
|
[47] |
C. Rousseaux, K. Glize, S. D. Baton, L. Lancia, D. Bénisti, and L. Gremillet, “Experimental evidence of backward Raman scattering driven cooperatively by two picosecond laser pulses propagating side by side,” Phys. Rev. Lett. 117, 015002 (2016).10.1103/PhysRevLett.117.015002
|
[48] |
D. E. Hinkel, E. A. Williams, R. L. Berger, L. V. Powers, A. B. Langdon, and C. H. Still, “Propagation of realistic beams in underdense plasma,” Phys. Plasmas 5, 1887–1894 (1998).10.1063/1.872859
|
[49] |
B. Bezzerides, “Intrinsic bending of a laser beam in a flowing plasma,” Phys. Plasmas 5, 2712–2720 (1998).10.1063/1.872959
|
[50] |
H. A. Rose, “Laser beam deflection by flow and nonlinear self-focusing,” Phys. Plasmas 3, 1709–1727 (1996).10.1063/1.871690
|
[51] |
D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–681 (2000).10.1103/physrevlett.84.678
|
[52] |
C. Ruyer, A. Debayle, P. Loiseau, M. Casanova, and P. E. Masson-Laborde, “Kinetic analytical modeling of Gaussian pulse beam-bending including the transient regime,” Phys. Plasmas 27, 102105 (2020).10.1063/5.0016214
|
[53] |
G. Riazuelo and G. Bonnaud, “Coherence properties of a smoothed laser beam in a hot plasma,” Phys. Plasmas 7, 3841–3844 (2000).10.1063/1.1290447
|
[54] |
O. A. Hurricane, P. T. Springer, P. K. Patel, D. A. Callahan, K. Baker, D. T. Casey, L. Divol, T. Döppner, D. E. Hinkel, M. Hohenberger, L. F. Berzak Hopkins, C. Jarrott, A. Kritcher, S. Le Pape, S. Maclaren, L. Masse, A. Pak, J. Ralph, C. Thomas, P. Volegov, and A. Zylstra, “Approaching a burning plasma on the NIF,” Phys. Plasmas 26, 052704 (2019).10.1063/1.5087256
|
[55] |
A. L. Kritcher, D. T. Casey, C. A. Thomas, A. B. Zylstra, M. Hohenberger, K. Baker, S. Le Pape, B. Bachmann, S. Bhandarkar, J. Biener, T. Braun, D. Clark, L. Divol, T. Döppner, D. Hinkel, C. Kong, D. Mariscal, M. Millot, J. Milovich, A. Nikroo, A. Pak, N. Rice, H. Robey, M. Stadermann, J. Sevier, D. Strozzi, C. Weber, C. Wild, B. Woodworth, J. Edwards, D. A. Callahan, and O. A. Hurricane, “Symmetric fielding of the largest diamond capsule implosions on the NIF,” Phys. Plasmas 27, 052710 (2020).10.1063/5.0004221
|
[56] |
A. B. Zylstra, D. T. Casey, A. Kritcher, L. Pickworth, B. Bachmann, K. Baker, J. Biener, T. Braun, D. Clark, V. Geppert-Kleinrath, M. Hohenberger, C. Kong, S. Le Pape, A. Nikroo, N. Rice, M. Rubery, M. Stadermann, D. Strozzi, C. Thomas, P. Volegov, C. Weber, C. Wild, C. Wilde, D. A. Callahan, and O. A. Hurricane, “Hot-spot mix in large-scale HDC implosions at NIF,” Phys. Plasmas 27, 092709 (2020).10.1063/5.0003779
|
[57] |
M. Hohenberger, D. T. Casey, A. L. Kritcher, A. Pak, A. B. Zylstra, C. A. Thomas, K. L. Baker, S. Le Pape, B. Bachmann, R. L. Berger, J. Biener, D. S. Clark, L. Divol, T. Döppner, V. Geppert-Kleinrath, D. Hinkel, H. Huang, C. Kong, O. L. Landen, J. Milovich, A. Nikroo, N. Rice, H. Robey, M. Schoff, J. Sevier, K. Sequoia, M. Stadermann, D. Strozzi, P. L. Volegov, C. Weber, C. Wild, B. Woodworth, D. A. Callahan, and O. A. Hurricane, “Integrated performance of large HDC-capsule implosions on the National Ignition Facility,” Phys. Plasmas 27, 112704 (2020).10.1063/5.0019083
|
[58] |
B. D. Fried, M. Gell-Mann, J. D. Jackson, and H. W. Wyld., “Longitudinal plasma oscillation in an electric field,” J. Nucl. Energy, Part C 1, 190 (1960).10.1088/0368-3281/1/4/302
|
[59] |
A. V. Brantov, V. Y. Bychenkov, V. T. Tikhonchuk, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).10.1063/1.872962
|
[60] |
V. Y. Bychenkov, W. Rozmus, A. V. Brantov, and V. T. Tikhonchuk, “Theory of filamentation instability and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511 (2000).10.1063/1.873970
|
[61] |
R. L. Berger, E. J. Valeo, and S. Brunner, “The transition from thermally driven to ponderomotively driven stimulated Brillouin scattering and filamentation of light in plasma,” Phys. Plasmas 12, 062508 (2005).10.1063/1.1931089
|
[62] |
M. Casanova, “Convenient computational forms for the frequency and damping of electrostatic waves in an unmagnetized plasma,” Laser Part. Beams 7, 165–171 (1989).10.1017/s0263034600005917
|
[63] |
S. Ghosal and H. A. Rose, “Two-dimensional plasma flow past a laser beam,” Phys. Plasmas 4, 2376–2396 (1997).10.1063/1.872219
|
[64] |
S. Ghosal and H. A. Rose, “Effect of induced spatial incoherence on flow induced laser beam deflection: Analytic theory,” Phys. Plasmas 4, 4189–4191 (1997).10.1063/1.872609
|
[65] |
H. A. Rose and S. Ghosal, “Effect of smoothing by spectral dispersion on flow induced laser beam deflection: The random phase modulation scheme,” Phys. Plasmas 5, 775–781 (1998).10.1063/1.872763
|
[66] |
F. Gilleron and R. Piron, “The fast non-LTE code DEDALE,” High Energy Density Phys. 17, 219–230 (2015).10.1016/j.hedp.2015.07.001
|
[67] |
H. Jourdren, “HERA: A hydrodynamic AMR platform for multi-physics simulations,” in Adaptive Mesh Refinement—Theory and Applications, edited by T. Plewa, T. Linde, and V. Gregory Weirs (Springer, Berlin, Heidelberg, 2005), pp. 283–294.
|
[68] |
R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams,” Phys. Plasmas 5, 4337–4356 (1998).10.1063/1.873171
|
[69] |
P. E. Masson-Laborde, S. Hüller, D. Pesme, M. Casanova, P. Loiseau, and C. Labaune, “Modeling parametric scattering instabilities in large-scale expanding plasmas,” J. Phys. IV 133, 247–251 (2006).10.1051/jp4:2006133050
|
[70] |
A. V. Maximov, I. G. Ourdev, D. Pesme, W. Rozmus, V. T. Tikhonchuk, and C. E. Capjack, “Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering,” Phys. Plasmas 8, 1319–1328 (2001).10.1063/1.1352056
|
[71] |
L. Videau, C. Rouyer, J. Garnier, and A. Migus, “Motion of hot spots in smoothed beams,” J. Opt. Soc. Am. A 16, 1672 (1999).10.1364/josaa.16.001672
|
[72] | |
[73] |
D. Penninckx, H. Coïc, A. Leblanc, A. Chatagnier, A. Bourgeade, E. d’Humières, and P. Loiseau, “Impact of FM-AM conversion on smoothing by spectral dispersion,” Proc. SPIE 9345, 93450P (2015).10.1117/12.2078888
|
[74] |
C. Huang, X. Lu, Y. Jiang, X. Wang, Z. Qiao, and W. Fan, “Real-time characterization of FM-AM modulation in a high-power laser facility using an RF-photonics system and a denoising algorithm,” Appl. Opt. 56, 1610–1615 (2017).10.1364/ao.56.001610
|
[75] | |
[76] |
A. Le Cain, G. Riazuelo, and J. M. Sajer, “Statistical spatio-temporal properties of the laser megajoule speckle,” Phys. Plasmas 19, 102704 (2012).10.1063/1.4757221
|
[77] |
N. Lemos, W. A. Farmer, N. Izumi, H. Chen, E. Kur, A. Pak, B. B. Pollock, J. D. Moody, J. S. Ross, D. E. Hinkel, O. S. Jones, T. Chapman, N. B. Meezan, P. A. Michel, and O. L. Landen, “Specular reflections (‘glint’) of the inner beams in a gas-filled cylindrical hohlraum,” Phys. Plasmas 29, 092704 (2022).10.1063/5.0099937
|
[78] |
H. Honda, H. Nishimura, S. Miyamoto, D. Ohnuki, K. Fujita, Y. Ochi, H. Miki, H. Takabe, S. Nakai, and K. Mima, “Influence of specularly reflected laser light on uniformity of implosion of indirect-drive fusion capsule,” Plasma Phys. Controlled Fusion 40, 1097–1104 (1998).10.1088/0741-3335/40/6/015
|
[79] |
D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross, L. F. Berzak Hopkins, A. L. Kritcher, D. E. Hinkel, and J. D. Moody, “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001
|
[80] |
A. L. Kritcher, D. Clark, S. Haan, S. A. Yi, A. B. Zylstra, D. A. Callahan, D. E. Hinkel, L. F. Berzak Hopkins, O. A. Hurricane, O. L. Landen, S. A. MacLaren, N. B. Meezan, P. K. Patel, J. Ralph, C. A. Thomas, R. Town, and M. J. Edwards, “Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators,” Phys. Plasmas 25, 056309 (2018).10.1063/1.5018000
|
[81] |
M. Vandenboomgaerde, A. Grisollet, M. Bonnefille, J. Clérouin, P. Arnault, N. Desbiens, and L. Videau, “Hollow wall to stabilize and enhance ignition hohlraums,” Phys. Plasmas 25, 012713 (2018).10.1063/1.5008669
|
[82] |
S. Depierreux, V. Tassin, D. Antigny, R. E. Bahr, N. Botrel, R. Bourdenet, G. DeDemo, L. DeLaval, O. Dubos, J. Fariaut, M. Ferri, T. Filkins, S. LeTacon, C. Sorce, B. Villette, and M. Vandenboomgaerde, “Experimental evidence of harnessed expansion of a high-Z plasma using the hollow wall design for indirect drive inertial confinement fusion,” Phys. Rev. Lett. 125, 255002 (2020).10.1103/physrevlett.125.255002
|
[83] |
V. Yahia, P.-E. Masson-Laborde, S. Depierreux, C. Goyon, G. Loisel, C. Baccou, N. G. Borisenko, A. Orekhov, T. Rienecker, O. Rosmej, D. Teychenné, and C. Labaune, “Reduction of stimulated Brillouin backscattering with plasma beam smoothing,” Phys. Plasmas 22, 042707 (2015).10.1063/1.4918942
|
[84] |
D. Turnbull, J. Katz, D. E. Hinkel, P. Michel, T. Chapman, L. Divol, E. Kur, S. MacLaren, A. L. Milder, M. Rosen, A. Shvydky, G. B. Zimmerman, and D. H. Froula, “Beam spray thresholds in ICF-relevant plasmas,” Phys. Rev. Lett. 129, 025001 (2022).10.1103/PhysRevLett.129.025001
|
[85] |
R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
|
[86] |
H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
|
[87] |
A. Fusaro, P. Loiseau, D. Penninckx, G. Riazuelo, and R. Collin, “Improving stimulated Brillouin scattering mitigation in weakly-damped plasmas: From spectral dispersion to spectral distribution,” Nucl. Fusion 61, 126049 (2021).10.1088/1741-4326/ac31d9
|
[88] |
P. Michel, C. Labaune, S. Weber, V. T. Tikhonchuk, G. Bonnaud, G. Riazuelo, and F. Walraet, “Studies of the laser filament instability in a semicollisional plasma,” Phys. Plasmas 10, 3545–3553 (2003).10.1063/1.1598204
|
[89] |
F. Walraet, G. Riazuelo, and G. Bonnaud, “Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion,” Phys. Plasmas 10, 811 (2003).10.1063/1.1539472
|