Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Wang Peipei, An Honghai, Fang Zhiheng, Xiong Jun, Xie Zhiyong, Wang Chen, He Zhiyu, Jia Guo, Wang Ruirong, Zheng Shu, Xia Lan, Feng Wei, Shi Haitao, Wang Wei, Sun Jinren, Gao Yanqi, Fu Sizu. Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target[J]. Matter and Radiation at Extremes, 2024, 9(1): 015602. doi: 10.1063/5.0122406
Citation: Wang Peipei, An Honghai, Fang Zhiheng, Xiong Jun, Xie Zhiyong, Wang Chen, He Zhiyu, Jia Guo, Wang Ruirong, Zheng Shu, Xia Lan, Feng Wei, Shi Haitao, Wang Wei, Sun Jinren, Gao Yanqi, Fu Sizu. Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target[J]. Matter and Radiation at Extremes, 2024, 9(1): 015602. doi: 10.1063/5.0122406

Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target

doi: 10.1063/5.0122406
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wch11@163.com and wangch@mail.shcnc.ac.cn
  • Received Date: 2022-08-24
  • Accepted Date: 2023-10-16
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions (LPIs). In this study, several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility. Through direct comparison with LPI results for a traditional narrowband laser, the actual LPI-suppression effect of the broadband laser is shown. The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1 × 1015 W cm−2. An abnormal hot-electron phenomenon is also investigated, using targets of different thicknesses.
  • loading
  • [1]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [2]
    D. H. Froula, L. Divol, R. A. London, R. L. Berger, T. Döppner, N. B. Meezan, J. Ralph, J. S. Ross, L. J. Suter, and S. H. Glenzer, “Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility,” Phys. Plasmas 17, 056302 (2010).10.1063/1.3304474
    [3]
    D. E. Hinkel, M. D. Rosen, E. A. Williams, A. B. Langdon, C. H. Still, D. A. Callahan, J. D. Moody, P. A. Michel, R. P. J. Town, R. A. London, and S. H. Langer, “Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility,” Phys. Plasmas 18, 056312 (2011).10.1063/1.3577836
    [4]
    B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/physrevlett.113.045002
    [5]
    D. Yang, Z. Li, S. W. Li, L. Hao, X. Li, L. Guo, S. Zou, X. Jiang, X. S. Peng, T. Xu, Y. Li, C. Y. Zheng, H. Cai, Z. Liu, J. Zheng, T. Gong, Z. Wang, H. Li, L. Kuang, Q. Li, F. Wang, S. Liu, J. Yang, S. Jiang, B. Zhang, and Y. Ding, “Laser plasma instability in indirect-drive inertial confinement fusion,” Sci. Sin. Phys., Mech. Astron. 48, 065203 (2018).10.1360/sspma2018-00056
    [6]
    S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715 (1996).10.1364/ol.21.001715
    [7]
    G. Cao, P. Shi, X. Zhang, R. Wu, S. Zhou, and Y. Li, “Improvement of target irradiation uniformity using spectral dispersion and distributed phase plate,” Chin. J. Lasers 38, 1002006 (2011).10.3788/cjl201138.1002006
    [8]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101
    [9]
    E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, and E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701 (1998).10.1063/1.872957
    [10]
    J. Grun, M. H. Emery, C. K. Manka, T. N. Lee, E. A. Mclean, A. Mostovych, J. Stamper, S. Bodner et al., “Rayleigh-Taylor instability growth rates in targets accelerated with a laser beam smoothed by induced spatial incoherence,” Phys. Rev. Lett. 58, 2672 (1987).10.1103/physrevlett.58.2672
    [11]
    C. J. McKinstrie, R. E. Giacone, and E. A. Startsev, “Accurate formulas for the Landau damping rates of electrostatic waves,” Phys. Plasmas 6, 463 (1999).10.1063/1.873212
    [12]
    P. Neumayer, R. L. Berger, L. Divol, D. H. Froula, R. A. London, B. J. MacGowan, N. B. Meezan, J. S. Ross, C. Sorce, L. J. Suter, and S. H. Glenzer, “Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas,” Phys. Rev. Lett. 100, 105001 (2008).10.1103/physrevlett.100.105001
    [13]
    E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins, M. S. Wei, R. Betti, S. P. Regan, D. H. Froula, C. Dorrer, D. R. Harding, V. Gopalaswamy, J. P. Knauer, R. Shah, O. M. Mannion, J. A. Marozas, P. B. Radha, M. J. Rosenberg, T. J. B. Collins, A. R. Christopherson, A. A. Solodov, D. Cao, J. P. Palastro, R. K. Follett, and M. Farrell, “Direct-drive laser fusion: Status, plans and future,” Philos. Trans. R. Soc., A 379(2189), 20200011 (2021).10.1098/rsta.2020.0011
    [14]
    J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
    [15]
    P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas,” Phys. Fluids B 3, 2882 (1991).10.1063/1.859921
    [16]
    Y. Zhao, S. M. Weng, M. Chen, J. Zheng, H. B. Zhuo, C. Ren, Z. M. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
    [17]
    Y. Zhao, S. Weng, Z. M. Sheng, and J. Q. Zhu, “Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light,” Plasma Phys. Controlled Fusion 61, 115008 (2019).10.1088/1361-6587/ab4691
    [18]
    H. Y. Zhou, C. Z. Xiao, D. B. Zou, X. Z. Li, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime,” Phys. Plasmas 25, 062703 (2018).10.1063/1.5030153
    [19]
    H. Y. Zhou, C. Z. Xiao, J. L. Jiao, Y. Lang, N. Zhao, D. Xie, D. B. Zou, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump,” Plasma Phys. Controlled Fusion 61, 105004 (2019).10.1088/1361-6587/ab34ba
    [20]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [21]
    R. K. Follett, J. G. Shaw, J. F. Myatt, J. P. Palastro, R. W. Short, and D. H. Froula, “Suppressing two-plasmon decay with laser frequency detuning,” Phys. Rev. Lett. 120, 135005 (2018).10.1103/physrevlett.120.135005
    [22]
    S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36, 1309 (1976).10.1103/physrevlett.36.1309
    [23]
    Y. Q. Gao, Y. Cui, L. L. Ji, D. X. Rao, X. H. Zhao, F. J. Li, D. Liu, W. Feng, L. Xia, J. N. Liu, H. T. Shi, P. Y. Du, J. Liu, X. L. Li, T. Wang, T. X. Zhang, C. Shan, Y. L. Hua, W. X. Ma, X. Sun, X. F. Chen, X. G. Huang, J. Zhu, W. B. Pei, Z. Sui, and S. Z. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [24]
    Y. Cui, Y.Q. Gao, D.X. Rao, D. Liu, F.J. Li, L.L. Ji, H.T. Shi, J.N. Liu, X.H. Zhao, W. Feng, L. Xia, J. Liu, X.L. Li, T. Wang, W.X. Ma, and Z. Sui, “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opl. Lett. 44, 2859 (2019).10.1364/OL.44.002859
    [25]
    J. D. Moody, P. Datte, K. Krauter, E. Bond, P. A. Michel, S. H. Glenzer, L. Divol, C. Niemann, L. Suter, N. Meezan, B. J. MacGowan, R. Hibbard, R. London, J. Kilkenny, R. Wallace, J. L. Kline, K. Knittel, G. Frieders, B. Golick, G. Ross, K. Widmann, J. Jackson, S. Vernon, and T. Clancy, “Backscatter measurements for NIF ignition targets (invited),” Rev. Sci. Instrum. 81, 10D921 (2010).10.1063/1.3491035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (58) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return