Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhao Yuan, Lu Haiyang, Zhou Cangtao, Zhu Jungao. Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014403. doi: 10.1063/5.0121558
Citation: Zhao Yuan, Lu Haiyang, Zhou Cangtao, Zhu Jungao. Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014403. doi: 10.1063/5.0121558

Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma

doi: 10.1063/5.0121558
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: luhaiyang@sztu.edu.cn
  • Received Date: 2022-08-18
  • Accepted Date: 2022-11-15
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • We present a novel scheme for dense electron acceleration driven by the laser irradiation of a near-critical-density plasma. The electron reflux effect in a transversely tailored plasma is particularly enhanced in the area of peak density. We observe a bubble-like distribution of re-injected electrons, which forms a strong quasistatic electromagnetic field that can accelerate electrons longitudinally while also preserving the electron transverse emittance. Simulation results demonstrate that over-dense electrons could be trapped in such an artificial bubble and accelerated to an energy of 500MeV. The obtained relativistic electron beam can reach a total charge of up to 0.26 nC and is well collimated with a small divergence of 17 mrad. Moreover, the wavelength of electron oscillation is noticeably reduced due to the shaking of the bubble structure in the laser field. As a result, the energy of the produced photons is substantially increased to the γ range. This new regime provides a path to generating high-charge electron beams and high-energy γ-ray sources.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267
    [2]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys 81, 1229 (2009).10.1103/revmodphys.81.1229
    [3]
    S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).10.1038/nphoton.2013.234
    [4]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg et al., “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett 122, 084801 (2019).10.1103/PhysRevLett.122.084801
    [5]
    S. P. D. Mangles, B. R. Walton, M. Tzoufras, Z. Najmudin, R. J. Clarke, A. E. Dangor, R. G. Evans, S. Fritzler, A. Gopal, C. Hernandez-Gomez et al., “Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma,” Phys. Rev. Lett 94, 245001 (2005).10.1103/physrevlett.94.245001
    [6]
    A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).10.1063/1.873242
    [7]
    C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772 (1999).10.1103/physrevlett.83.4772
    [8]
    B. Liu, H. Y. Wang, J. Liu, L. B. Fu, Y. J. Xu, X. Q. Yan, and X. T. He, “Generating overcritical dense relativistic electron beams via self-matching resonance acceleration,” Phys. Rev. Lett. 110, 045002 (2013).10.1103/PhysRevLett.110.045002
    [9]
    Y. Tong-Pu, A. Pukhov, Z.-M. Sheng, F. Liu, and G. Shvets, “Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target,” Phys. Rev. Lett. 110, 045001 (2013).10.1103/physrevlett.110.045001
    [10]
    T. W. Huang, C. T. Zhou, H. Zhang, S. Z. Wu, B. Qiao, X. T. He, and S. C. Ruan, “Relativistic laser hosing instability suppression and electron acceleration in a preformed plasma channel,” Phys. Rev. E 95, 043207 (2017).10.1103/PhysRevE.95.043207
    [11]
    J. Krall, A. Ting, E. Esarey, and P. Sprangle, “Enhanced acceleration in a self-modulated-laser wake-field accelerator,” Phys. Rev. E 48, 2157 (1993).10.1103/physreve.48.2157
    [12]
    C. B. Schroeder, E. Esarey, B. A. Shadwick, and W. P. Leemans, “Trapping, dark current, and wave breaking in nonlinear plasma waves,” Phys. Plasmas 13, 033103 (2006).10.1063/1.2173960
    [13]
    A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/PhysRevLett.104.025003
    [14]
    M. Chen, Z.-M. Sheng, Y.-Y. Ma, and J. Zhang, “Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases,” J. Appl. Phys. 99, 056109 (2006).10.1063/1.2179194
    [15]
    A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. Van Tilborg et al., “Tunable laser plasma accelerator based on longitudinal density tailoring,” Nat. Phys. 7, 862–866 (2011).10.1038/nphys2071
    [16]
    D. Umstadter, J. K. Kim, and E. Dodd, “Laser injection of ultrashort electron pulses into wakefield plasma waves,” Phys. Rev. Lett. 76, 2073 (1996).10.1103/physrevlett.76.2073
    [17]
    T. Z. Esirkepov, Y. Kato, and S. V. Bulanov, “Bow wave from ultraintense electromagnetic pulses in plasmas,” Phys. Rev. Lett. 101, 265001 (2008).10.1103/physrevlett.101.265001
    [18]
    J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, “Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel,” Phys. Plasmas 17, 083107 (2010).10.1063/1.3469581
    [19]
    H. T. Kim, V. B. Pathak, K. Hong Pae, A. Lifschitz, F. Sylla, J. H. Shin, C. Hojbota, S. K. Lee, J. H. Sung, H. W. Lee et al., “Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses,” Sci. Rep. 7, 10203 (2017).10.1038/s41598-017-09267-1
    [20]
    G. Golovin, W. Yan, J. Luo, C. Fruhling, D. Haden, B. Zhao, C. Liu, M. Chen, S. Chen, P. Zhang et al., “Electron trapping from interactions between laser-driven relativistic plasma waves,” Phys. Rev. Lett. 121, 104801 (2018).10.1103/physrevlett.121.104801
    [21]
    W. Lu, M. Tzoufras, C. Joshi, F. Tsung, W. Mori, J. Vieira, R. Fonseca, and L. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.--Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
    [22]
    P. Tomassini, M. Galimberti, A. Giulietti, D. Giulietti, L. A. Gizzi, L. Labate, and F. Pegoraro, “Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking,” Phys. Rev. Spec. Top.--Accel. Beams 6, 121301 (2003).10.1103/physrevstab.6.121301
    [23]
    A. V. Brantov, T. Z. Esirkepov, M. Kando, H. Kotaki, V. Y. Bychenkov, and S. V. Bulanov, “Controlled electron injection into the wake wave using plasma density inhomogeneity,” Phys. Plasmas 15, 073111 (2008).10.1063/1.2956989
    [24]
    J. U. Kim, N. Hafz, and H. Suk, “Electron trapping and acceleration across a parabolic plasma density profile,” Phys. Rev. E 69, 026409 (2004).10.1103/PhysRevE.69.026409
    [25]
    S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, “Particle injection into the wave acceleration phase due to nonlinear wake wave breaking,” Phys. Rev. E 58, R5257 (1998).10.1103/physreve.58.r5257
    [26]
    H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, “Plasma electron trapping and acceleration in a plasma wake field using a density transition,” Phys. Rev. Lett. 86, 1011 (2001).10.1103/physrevlett.86.1011
    [27]
    L. T. Ke, K. Feng, W. T. Wang, Z. Y. Qin, C. H. Yu, Y. Wu, Y. Chen, R. Qi, Z. J. Zhang, Y. Xu et al., “Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma,” Phys. Rev. Lett. 126, 214801 (2021).10.1103/physrevlett.126.214801
    [28]
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz et al., “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110, 185006 (2013).10.1103/physrevlett.110.185006
    [29]
    F. Y. Li, Z. M. Sheng, Y. Liu, J. Meyer-ter-Vehn, W. B. Mori, W. Lu, and J. Zhang, “Dense attosecond electron sheets from laser wakefields using an up-ramp density transition,” Phys. Rev. Lett. 110, 135002 (2013).10.1103/physrevlett.110.135002
    [30]
    M. Kozlova, I. Andriyash, J. Gautier, S. Sebban, S. Smartsev, N. Jourdain, U. Chaulagain, Y. Azamoum, A. Tafzi, J.-P. Goddet, K. Oubrerie, C. Thaury, A. Rousse, and K. Ta Phuoc, “Hard X rays from laser-wakefield accelerators in density tailored plasmas,” Phys. Rev. X 10, 011061 (2020).10.1103/physrevx.10.011061
    [31]
    J. Ferri and X. Davoine, “Enhancement of betatron x rays through asymmetric laser wakefield generated in transverse density gradients,” Phys. Rev. Accel. Beams 21, 091302 (2018).10.1103/physrevaccelbeams.21.091302
    [32]
    P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (World Scientific, 2005).
    [33]
    M. Vranic, R. A. Fonseca, and L. O. Silva, “Extremely intense laser-based electron acceleration in a plasma channel,” Plasma Phys. Controlled Fusion 60, 034002 (2018).10.1088/1361-6587/aaa36c
    [34]
    A. Macchi, A Superintense Laser-Plasma Interaction Primer (Springer, 2013)
    [35]
    X. Zhang, T. Tajima, D. Farinella, Y. Shin, G. Mourou, J. Wheeler, P. Taborek, P. Chen, F. Dollar, and B. Shen, “Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes,” Phys. Rev. Accel. Beams 19, 101004 (2016).10.1103/physrevaccelbeams.19.101004
    [36]
    T. R. Clark and H. M. Milchberg, “Time and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).10.1103/physrevlett.78.2373
    [37]
    L. Ju, C. Zhou, K. Jiang, T. Huang, H. Zhang, T. Cai, J. Cao, B. Qiao, and S. Ruan, “Manipulating the topological structure of ultrarelativistic electron beams using Laguerre–Gaussian laser pulse,” New J. Phys. 20, 063004 (2018).10.1088/1367-2630/aac68a
    [38]
    R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C.-e. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).10.1038/srep15499
    [39]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1–48 (2013).10.1103/revmodphys.85.1
    [40]
    S. Kneip, S. R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R. Heathcote, S. P. D. Mangles, J. R. Marquès, A. Maksimchuk, P. M. Nilson, K. T. Phuoc, S. Reed, M. Tzoufras, F. S. Tsung, L. Willingale, W. B. Mori, A. Rousse, K. Krushelnick, and Z. Najmudin, “Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity,” Phys. Rev. Lett. 100, 105006 (2008).10.1103/physrevlett.100.105006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (32) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return