Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Kong Defeng, Zhang Guoqiang, Shou Yinren, Xu Shirui, Mei Zhusong, Cao Zhengxuan, Pan Zhuo, Wang Pengjie, Qi Guijun, Lou Yao, Ma Zhiguo, Lan Haoyang, Wang Wenzhao, Li Yunhui, Rubovic Peter, Veselsky Martin, Bonasera Aldo, Zhao Jiarui, Geng Yixing, Zhao Yanying, Fu Changbo, Luo Wen, Ma Yugang, Yan Xueqing, Ma Wenjun. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7(6): 064403. doi: 10.1063/5.0120845
Citation: Kong Defeng, Zhang Guoqiang, Shou Yinren, Xu Shirui, Mei Zhusong, Cao Zhengxuan, Pan Zhuo, Wang Pengjie, Qi Guijun, Lou Yao, Ma Zhiguo, Lan Haoyang, Wang Wenzhao, Li Yunhui, Rubovic Peter, Veselsky Martin, Bonasera Aldo, Zhao Jiarui, Geng Yixing, Zhao Yanying, Fu Changbo, Luo Wen, Ma Yugang, Yan Xueqing, Ma Wenjun. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7(6): 064403. doi: 10.1063/5.0120845

High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions

doi: 10.1063/5.0120845
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zhangguoqiang@zjlab.org.cn and wenjun.ma@pku.edu.cn; a)Authors to whom correspondence should be addressed: zhangguoqiang@zjlab.org.cn and wenjun.ma@pku.edu.cn
  • Received Date: 2022-08-15
  • Accepted Date: 2022-10-11
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-01
  • In this work, the high-energy-density plasmas (HEDP) evolved from joule-class-femtosecond-laser-irradiated nanowire-array (NWA) targets were numerically and experimentally studied. The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma, contributing most to the high energy densities. The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur. We give the electron and ion energy densities for broad target parameter ranges. The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets, and the volume of the HEDP was several-fold greater. At optimal target parameters, 8% of the laser energy can be converted to confined protons, and this results in ion energy densities at the GJ/cm3 level. In the experiments, the measured energy of the emitted protons reached 4 MeV, and the changes in energy with the NWA’s parameters were found to fit the simulation results well. Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of (24 ± 18) × 106/J from deuterated polyethylene NWA targets also confirmed these results.
  • loading
  • [1]
    V. E. Fortov, “High Energy Densities in Planets and Stars,” Extreme States of Matter: High Energy Density Physics (Springer International Publishing, Cham, 2016), pp. 505–590.10.1007/978-3-319-18953-6_9
    [2]
    D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz, “Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event,” Nature 551(7678), 80–84 (2017).10.1038/nature24453
    [3]
    J. P. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, 2008).
    [4]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86(3), 436–439 (2001).10.1103/physrevlett.86.436
    [5]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).10.1038/nphys3736
    [6]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).10.1063/1.4934714
    [7]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).10.1038/nature13008
    [8]
    C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nat. Commun. 4, 2506 (2013).10.1038/ncomms3506
    [9]
    D. T. Casey, D. B. Sayre, C. R. Brune, V. A. Smalyuk, C. R. Weber, R. E. Tipton et al., “Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion,” Nat. Phys. 13(12), 1227–1231 (2017).10.1038/nphys4220
    [10]
    I. Hofmann, “Review of accelerator driven heavy ion nuclear fusion,” Matter Radiat. Extremes 3(1), 1–11 (2018).10.1016/j.mre.2017.12.001
    [11]
    L. Fedeli, A. Formenti, A. Pazzaglia, F. M. Arioli, A. Tentori, and M. Passoni, “Enhanced laser-driven hadron sources with nanostructured double-layer targets,” New J. Phys. 22(3), 033045 (2020).10.1088/1367-2630/ab74a4
    [12]
    W. Bang, M. Barbui, A. Bonasera, G. Dyer, H. J. Quevedo, K. Hagel et al., “Temperature measurements of fusion plasmas produced by Petawatt-Laser-Irradiated D23He or CD43He clustering gases,” Phys. Rev. Lett. 111(5), 055002 (2013).10.1103/PhysRevLett.111.055002
    [13]
    M. Barbui, W. Bang, A. Bonasera, K. Hagel, K. Schmidt, J. B. Natowitz et al., “Measurement of the plasma astrophysical S factor for the 3He(d, p)4He reaction in exploding molecular clusters,” Phys. Rev. Lett. 111(8), 082502 (2013).10.1103/PhysRevLett.111.082502
    [14]
    G. Zhang, H. J. Quevedo, A. Bonasera, M. Donovan, G. Dyer, E. Gaul et al., “Range of plasma ions in cold cluster gases near the critical point,” Phys. Lett. A 381(19), 1682–1686 (2017).10.1016/j.physleta.2017.03.016
    [15]
    G. Zhang, M. Huang, A. Bonasera, Y. G. Ma, B. F. Shen, H. W. Wang et al., “Nuclear probes of an out-of-equilibrium plasma at the highest compression,” Phys. Lett. A 383(19), 2285–2289 (2019).10.1016/j.physleta.2019.04.048
    [16]
    S. Fujioka, H. Takabe, N. Yamamoto, D. Salzmann, F. Wang, H. Nishimura et al., “X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion,” Nat. Phys. 5(11), 821–825 (2009).10.1038/nphys1402
    [17]
    A. J. Kemp, S. C. Wilks, E. P. Hartouni, and G. Grim, “Generating keV ion distributions for nuclear reactions at near solid-density using intense short-pulse lasers,” Nat. Commun. 10(1), 4156 (2019).10.1038/s41467-019-12076-x
    [18]
    M. K. Matzen, “Z pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4(5), 1519–1527 (1997).10.1063/1.872323
    [19]
    R. P. Drake, “Introduction to high-energy-density physics,” High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics (Springer International Publishing, Cham, 2018), pp. 1–20.
    [20]
    M. Huang, H. J. Quevedo, G. Zhang, and A. Bonasera, “Nuclear astrophysics with lasers,” Nucl. Phys. News 29(3), 9–13 (2019).10.1080/10619127.2019.1603555
    [21]
    P. Wang, Z. Gong, S. G. Lee, Y. Shou, Y. Geng, C. Jeon et al., “Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity,” Phys. Rev. X 11(2), 021049 (2021).10.1103/physrevx.11.021049
    [22]
    O. N. Rosmej, Z. Samsonova, S. Höfer, D. Kartashov, C. Arda, D. Khaghani et al., “Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction,” Phys. Plasmas 25(8), 083103 (2018).10.1063/1.5027463
    [23]
    J. H. Bin, W. J. Ma, H. Y. Wang, M. J. Streeter, C. Kreuzer, D. Kiefer et al., “Ion acceleration using relativistic pulse shaping in near-critical-density plasmas,” Phys. Rev. Lett. 115(6), 064801 (2015).10.1103/PhysRevLett.115.064801
    [24]
    I. Prencipe, A. Sgattoni, D. Dellasega, L. Fedeli, L. Cialfi, I. W. Choi et al., “Development of foam-based layered targets for laser-driven ion beam production,” Plasma Phys. Controlled Fusion 58(3), 034019 (2016).10.1088/0741-3335/58/3/034019
    [25]
    J. H. Bin, M. Yeung, Z. Gong, H. Y. Wang, C. Kreuzer, M. L. Zhou et al., “Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma,” Phys. Rev. Lett. 120(7), 074801 (2018).10.1103/PhysRevLett.120.074801
    [26]
    W. J. Ma, I. J. Kim, J. Q. Yu, I.W. Choi, P. K. Singh, H. W. Lee et al., “Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil,” Phys. Rev. Lett. 122(1), 014803 (2019).10.1103/PhysRevLett.122.014803
    [27]
    R. Hollinger, C. Bargsten, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, M. G. Capeluto et al., “Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime,” Optica 4(11), 1344 (2017).10.1364/optica.4.001344
    [28]
    C. Bargsten, R. Hollinger, M. G. Capeluto, V. Kaymak, A. Pukhov, S. Wang et al., “Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures,” Sci. Adv. 3(1), e1601558 (2017).10.1126/sciadv.1601558
    [29]
    L. L. Ji, J. Snyder, A. Pukhov, R. R. Freeman, and K. U. Akli, “Towards manipulating relativistic laser pulses with micro-tube plasma lenses,” Sci. Rep. 6, 23256 (2016).10.1038/srep23256
    [30]
    G. Cristoforetti, P. Londrillo, P. K. Singh, F. Baffigi, G. D’Arrigo, A. D. Lad et al., “Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets,” Sci. Rep. 7(1), 1479 (2017).10.1038/s41598-017-01677-5
    [31]
    L.-q. Zhang, S.-d. Wu, H.-r. Huang, H.-y. Lan, W.-y. Liu, Y.-c. Wu et al., “Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array,” Phys. Plasmas 28(2), 023110 (2021).10.1063/5.0030909
    [32]
    O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje et al., “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).10.1103/physrevlett.103.215004
    [33]
    K. Jiang, A. Pukhov, and C. T. Zhou, “TJ cm−3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires,” Plasma Phys. Controlled Fusion 63(1), 015014 (2020).10.1088/1361-6587/abc89e
    [34]
    X. Z. Wu, Z. Gong, Y. R. Shou, Y. H. Tang, J. Q. Yu, G. Mourou et al., “Efficiency enhancement of ion acceleration from thin target irradiated by multi-PW few-cycle laser pulses,” Phys. Plasmas 28(2), 023102 (2021).10.1063/5.0029171
    [35]
    E. Eftekhari-Zadeh, M. S. Blümcke, Z. Samsonova, R. Loetzsch, I. Uschmann, M. Zapf et al., “Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses,” Phys. Plasmas 29(1), 013301 (2022).10.1063/5.0064364
    [36]
    R. Xie, L. H. Cao, Y. Chao, Y. Jiang, Z. J. Liu, C. Y. Zheng et al., “Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target,” Phys. Plasmas 27(12), 123108 (2020).10.1063/5.0022144
    [37]
    S. Jiang, A. G. Krygier, D. W. Schumacher, K. U. Akli, and R. R. Freeman, “Effects of front-surface target structures on properties of relativistic laser-plasma electrons,” Phys. Rev. E 89(1), 013106 (2014).10.1103/PhysRevE.89.013106
    [38]
    V. Kaymak, A. Pukhov, V. N. Shlyaptsev, and J. J. Rocca, “Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays,” Phys. Rev. Lett. 117(3), 035004 (2016).10.1103/PhysRevLett.117.035004
    [39]
    L. Cao, Y. Gu et al., “Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target,” Phys. Plasmas 17(4), 043103 (2010).10.1063/1.3360298.
    [40]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85(14), 2945–2948 (2000).10.1103/physrevlett.85.2945
    [41]
    F. Wagner, O. Deppert, C. Brabetz, P. Fiala, A. Kleinschmidt, P. Poth et al., “Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets,” Phys. Rev. Lett. 116(20), 205002 (2016).10.1103/physrevlett.116.205002
    [42]
    B. Li, Z. Zhang, J. Wang, B. Zhang, Z. Zhao, L. Shan et al., “Transport of fast electrons in a nanowire array with collisional effects included,” Phys. Plasmas 22(12), 123118 (2015).10.1063/1.4938515
    [43]
    D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner, L. Gremillet et al., “Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy,” Sci. Rep. 7(1), 11366 (2017).10.1038/s41598-017-11589-z
    [44]
    M. Dozières, G. M. Petrov, P. Forestier-Colleoni, P. Campbell, K. Krushelnick, A. Maksimchuk et al., “Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency,” Plasma Phys. Controlled Fusion 61(6), 065016 (2019).10.1088/1361-6587/ab157c
    [45]
    M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto et al., “Relativistic plasma nanophotonics for ultrahigh energy density physics,” Nat. Photonics 7(10), 796–800 (2013).10.1038/nphoton.2013.217
    [46]
    D. Rolles, “Highly efficient nanoscale X-ray sources,” Nat. Photonics 12(2), 59–60 (2018).10.1038/s41566-018-0092-9
    [47]
    W.-M. Wang, Z.-M. Sheng, P. Gibbon, L.-M. Chen, Y.-T. Li, and J. Zhang, “Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime,” Proc. Natl. Acad. Sci. U. S. A. 115(40), 9911–9916 (2018).10.1073/pnas.1809649115
    [48]
    Y. Shou, D. Kong, P. Wang, Z. Mei, Z. Cao, Z. Pan et al., “High-efficiency water-window x-ray generation from nanowire array targets irradiated with femtosecond laser pulses,” Opt. Express 29(4), 5427–5436 (2021).10.1364/oe.417512
    [49]
    A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov et al., “Micro-scale fusion in dense relativistic nanowire array plasmas,” Nat. Commun. 9(1), 1077 (2018).10.1038/s41467-018-03445-z
    [50]
    A. Curtis, R. Hollinger, C. Calvi, S. Wang, S. Huanyu, Y. Wang et al., “Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays,” Phys. Rev. Res. 3(4), 043181 (2021).10.1103/physrevresearch.3.043181
    [51]
    S. H. Glenzer, D. A. Callahan, A. J. MacKinnon, J. L. Kline, G. Grim, E. T. Alger et al., “Cryogenic thermonuclear fuel implosions on the national ignition facility,” Phys. Plasmas 19(5), 056318 (2012).10.1063/1.4719686
    [52]
    R. Hollinger, S. Wang, Y. Wang, A. Moreau, M. G. Capeluto, H. Song et al., “Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses,” Nat. Photonics 14(10), 607–611 (2020).10.1038/s41566-020-0666-1
    [53]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).10.1088/0741-3335/57/11/113001
    [54]
    Z. Gong, A. P. L. Robinson, X. Q. Yan, and A. V. Arefiev, “Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target,” Plasma Phys. Controlled Fusion 61(3), 035012 (2019).10.1088/1361-6587/aaf94b
    [55]
    Y.-X. Geng, L. Qing, Y.-R. Shou, J.-G. Zhu, X.-H. Xu, M.-J. Wu et al., “Generating proton beams exceeding 10 MeV using high contrast 60 TW laser,” Chin. Phys. Lett. 35(9), 092901 (2018).10.1088/0256-307x/35/9/092901
    [56]
    R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, “MULTI— a computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Commun. 49(3), 475–505 (1988).10.1016/0010-4655(88)90008-2
    [57]
    X. Wang and G.-R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectron. Eng. 66(1-4), 166–170 (2003).10.1016/s0167-9317(03)00042-x
    [58]
    S. Vallières, M. Salvadori, A. Permogorov, G. Cantono, K. Svendsen, Z. Chen et al., “Enhanced laser-driven proton acceleration using nanowire targets,” Sci. Rep. 11(1), 2226 (2021).10.1038/s41598-020-80392-0
    [59]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi et al., “SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [60]
    D. P. Higginson, A. Link, and A. Schmidt, “A pairwise nuclear fusion algorithm for weighted particle-in-cell plasma simulations,” J. Comput. Phys. 388, 439–453 (2019).10.1016/j.jcp.2019.03.020
    [61]
    P. Rubovič, A. Bonasera, P. Burian, Z. Cao, C. Fu, D. Kong et al., “Measurements of D–D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 985, 164680 (2021).10.1016/j.nima.2020.164680
    [62]
    S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions: An Introduction to Theory and Experiment (van Nostrand Princeton, 1960).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (268) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return