Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Liu Wei, Jia Qing, Zheng Jian. Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014405. doi: 10.1063/5.0120072
Citation: Liu Wei, Jia Qing, Zheng Jian. Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014405. doi: 10.1063/5.0120072

Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma

doi: 10.1063/5.0120072
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: qjia@ustc.edu.cn
  • Received Date: 2022-08-11
  • Accepted Date: 2022-12-16
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • The inverse Faraday effect (IFE), which usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a circularly polarized beam propagates in a plasma, has rarely been studied for lasers with unconventional polarization states. In this paper, IFE is reconsidered for weakly relativistic full Poincaré beams, which can contain all possible laser polarization states. Starting from cold electron fluid equations and the conservation of generalized vorticity, a self-consistent theoretical model combining the nonlinear azimuthal current and diamagnetic current is presented. The theoretical results show that when such a laser propagates in a plasma, an azimuthally varying quasi-static axial magnetic field can be generated, which is quite different from the circularly polarized case. These results are qualitatively and quantitatively verified by three-dimensional particle-in-cell simulations. Our work extends the theoretical understanding of the IFE and provides a new degree of freedom in the design of magnetized plasma devices.
  • loading
  • [1]
    M. Tanimoto, S. Kato, E. Miura, N. Saito, K. Koyama, and J. K. Koga, “Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields,” Phys. Rev. E 68, 026401 (2003).10.1103/PhysRevE.68.026401
    [2]
    X. H. Yuan, A. P. L. Robinson, M. N. Quinn, D. C. Carroll, M. Borghesi, R. J. Clarke, R. G. Evans, J. Fuchs, P. Gallegos, L. Lancia, D. Neely, K. Quinn, L. Romagnani, G. Sarri, P. A. Wilson, and P. McKenna, “Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets,” New J. Phys. 12, 063018 (2010).10.1088/1367-2630/12/6/063018
    [3]
    B. Liu, H. Y. Wang, J. Liu, L. B. Fu, Y. J. Xu, X. Q. Yan, and X. T. He, “Generating overcritical dense relativistic electron beams via self-matching resonance acceleration,” Phys. Rev. Lett. 110, 045002 (2013).10.1103/PhysRevLett.110.045002
    [4]
    Z. Gong, F. Mackenroth, T. Wang, X. Q. Yan, T. Toncian, and A. V. Arefiev, “Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields,” Phys. Rev. E 102, 013206 (2020).10.1103/PhysRevE.102.013206
    [5]
    D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003
    [6]
    M. A. Yates, D. B. van Hulsteyn, H. Rutkowski, G. Kyrala, and J. U. Brackbill, “Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets,” Phys. Rev. Lett. 49, 1702–1704 (1982).10.1103/physrevlett.49.1702
    [7]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
    [8]
    R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412, 798–802 (2001).10.1038/35090525
    [9]
    H.-b. Cai, S. P. Zhu, M. Chen, S.-z. Wu, X. T. He, and K. Mima, “Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas,” Phys. Rev. E 83, 036408 (2011).10.1103/PhysRevE.83.036408
    [10]
    W. A. Farmer, J. M. Koning, D. J. Strozzi, D. E. Hinkel, L. F. Berzak Hopkins, O. S. Jones, and M. D. Rosen, “Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment,” Phys. Plasmas 24, 052703 (2017).10.1063/1.4983140
    [11]
    E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029–1041 (1986).10.1063/1.865901
    [12]
    Q. Jia, K. Mima, H.-b. Cai, T. Taguchi, H. Nagatomo, and X. T. He, “Self-generated magnetic dipoles in weakly magnetized beam-plasma system,” Phys. Rev. E 91, 023107 (2015).10.1103/PhysRevE.91.023107
    [13]
    J. M. Tian, H. B. Cai, W. S. Zhang, E. H. Zhang, B. Du, and S. P. Zhu, “Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target,” High Power Laser Sci. Eng. 8, E16 (2020).10.1017/hpl.2020.16
    [14]
    H.-b. Cai, X.-x. Yan, P.-l. Yao, and S.-p. Zhu, “Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma,” Matter Radiat. Extremes 6, 035901 (2021).10.1063/5.0042973
    [15]
    J. Deschamps, M. Fitaire, and M. Lagoutte, “Inverse Faraday effect in a plasma,” Phys. Rev. Lett. 25, 1330–1332 (1970).10.1103/physrevlett.25.1330
    [16]
    A. D. Steiger and C. H. Woods, “Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma,” Phys. Rev. A 5, 1467–1474 (1972).10.1103/physreva.5.1467
    [17]
    Z. M. Sheng and J. Meyer-ter-Vehn, “Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas,” Phys. Rev. E 54, 1833–1842 (1996).10.1103/physreve.54.1833
    [18]
    V. I. Berezhiani, S. M. Mahajan, and N. L. Shatashvili, “Theory of magnetic field generation by relativistically strong laser radiation,” Phys. Rev. E 55, 995–1001 (1997).10.1103/physreve.55.995
    [19]
    A. Kim, M. Tushentsov, D. Anderson, and M. Lisak, “Axial magnetic fields in relativistic self-focusing channels,” Phys. Rev. Lett. 89, 095003 (2002).10.1103/PhysRevLett.89.095003
    [20]
    A. A. Frolov, “Excitation of magnetic fields by a circularly polarized laser pulse in a plasma channel,” Plasma Phys. Rep. 30, 698–709 (2004).10.1134/1.1788763
    [21]
    N. Naseri, V. Y. Bychenkov, and W. Rozmus, “Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas,” Phys. Plasmas 17, 083109 (2010).10.1063/1.3471940
    [22]
    S. Ali, J. R. Davies, and J. T. Mendonca, “Inverse Faraday effect with linearly polarized laser pulses,” Phys. Rev. Lett. 105, 035001 (2010).10.1103/PhysRevLett.105.035001
    [23]
    M. G. Haines, “Generation of an axial magnetic field from photon spin,” Phys. Rev. Lett. 87, 135005 (2001).10.1103/physrevlett.87.135005
    [24]
    Z. Najmudin, M. Tatarakis, A. Pukhov, E. L. Clark, R. J. Clarke, A. E. Dangor, J. Faure, V. Malka, D. Neely, M. I. K. Santala, and K. Krushelnick, “Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma,” Phys. Rev. Lett. 87, 215004 (2001).10.1103/physrevlett.87.215004
    [25]
    I. Y. Kostyukov, G. Shvets, N. J. Fisch, and J. M. Rax, “Magnetic-field generation and electron acceleration in relativistic laser channel,” Phys. Plasmas 9, 636–648 (2002).10.1063/1.1430436
    [26]
    G. Shvets, N. J. Fisch, and J. M. Rax, “Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles,” Phys. Rev. E 65, 046403 (2002).10.1103/PhysRevE.65.046403
    [27]
    D. Wu and J. W. Wang, “Magetostatic amplifier with tunable maximum by twisted-light plasma interactions,” Plasma Phys. Controlled Fusion 59, 095010 (2017).10.1088/1361-6587/aa77c5
    [28]
    Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, and R. J. Kingham, “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121, 145002 (2018).10.1103/physrevlett.121.145002
    [29]
    R. Nuter, P. Korneev, I. Thiele, and V. Tikhonchuk, “Plasma solenoid driven by a laser beam carrying an orbital angular momentum,” Phys. Rev. E 98, 033211 (2018).10.1103/physreve.98.033211
    [30]
    A. Longman and R. Fedosejevs, “Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams,” Phys. Rev. Res. 3, 043180 (2021).10.1103/physrevresearch.3.043180
    [31]
    R. N. Sudan, “Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target,” Phys. Rev. Lett. 70, 3075–3078 (1993).10.1103/physrevlett.70.3075
    [32]
    R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).10.1103/physrev.50.115
    [33]
    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).10.1103/physreva.45.8185
    [34]
    Y. Shi, B. Shen, L. Zhang, X. Zhang, W. Wang, and Z. Xu, “Light fan driven by a relativistic laser pulse,” Phys. Rev. Lett. 112, 235001 (2014).10.1103/PhysRevLett.112.235001
    [35]
    J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).10.1038/ncomms10371
    [36]
    A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quéré, “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440–443 (2017).10.1038/nphys4007
    [37]
    K. Qu, Q. Jia, and N. J. Fisch, “Plasma q-plate for generation and manipulation of intense optical vortices,” Phys. Rev. E 96, 053207 (2017).10.1103/PhysRevE.96.053207
    [38]
    W. P. Wang, C. Jiang, H. Dong, X. M. Lu, J. F. Li, R. J. Xu, Y. J. Sun, L. H. Yu, Z. Guo, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “Hollow plasma acceleration driven by a relativistic reflected hollow laser,” Phys. Rev. Lett. 125, 034801 (2020).10.1103/PhysRevLett.125.034801
    [39]
    R. Nuter, P. Korneev, E. Dmitriev, I. Thiele, and V. T. Tikhonchuk, “Gain of electron orbital angular momentum in a direct laser acceleration process,” Phys. Rev. E 101, 053202 (2020).10.1103/PhysRevE.101.053202
    [40]
    A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).10.1364/oe.18.010777
    [41]
    L.-G. Wang, “Optical forces on submicron particles induced by full Poincaré beams,” Opt. Express 20, 20814–20826 (2012).10.1364/oe.20.020814
    [42]
    W. Zhu, V. Shvedov, W. She, and W. Krolikowski, “Transverse spin angular momentum of tightly focused full Poincaré beams,” Opt. Express 23, 34029–34041 (2015).10.1364/oe.23.034029
    [43]
    W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers,” Phys. Rev. Res. 3, 023055 (2021).10.1103/physrevresearch.3.023055
    [44]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).10.1038/nphys595
    [45]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
    [46]
    S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4, 1086–1091 (2017).10.1364/optica.4.001086
    [47]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [48]
    S.-p. Zhu, C. Y. Zheng, and X. T. He, “A theoretical model for a spontaneous magnetic field in intense laser plasma interaction,” Phys. Plasmas 10, 4166–4168 (2003).10.1063/1.1608936
    [49]
    B. Qiao, S.-p. Zhu, C. Y. Zheng, and X. T. He, “Quasistatic magnetic and electric fields generated in intense laser plasma interaction,” Phys. Plasmas 12, 053104 (2005).10.1063/1.1889090
    [50]
    B. Qiao, X. T. He, and S.-p. Zhu, “Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction,” Phys. Plasmas 13, 053106 (2006).10.1063/1.2200298
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (42) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return