Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Li Zhaoli, Zuo Yanlei, Zeng Xiaoming, Wu Zhaohui, Wang Xiaodong, Wang Xiao, Mu Jie, Hu Bilong. Ultraintense few-cycle infrared laser generation by fast-extending plasma grating[J]. Matter and Radiation at Extremes, 2023, 8(1): 014401. doi: 10.1063/5.0119868
Citation: Li Zhaoli, Zuo Yanlei, Zeng Xiaoming, Wu Zhaohui, Wang Xiaodong, Wang Xiao, Mu Jie, Hu Bilong. Ultraintense few-cycle infrared laser generation by fast-extending plasma grating[J]. Matter and Radiation at Extremes, 2023, 8(1): 014401. doi: 10.1063/5.0119868

Ultraintense few-cycle infrared laser generation by fast-extending plasma grating

doi: 10.1063/5.0119868
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wuzhaohui20050@163.com
  • Received Date: 2022-08-10
  • Accepted Date: 2022-10-18
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • Ultraintense short-period infrared laser pulses play an important role in frontier scientific research, but their power is quite low when generated using current technology. This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse. In this scheme, an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse, and the infrared laser pulse is reflected by the rapidly extending plasma grating. Because of the high expansion velocity of the latter, the infrared laser pulse is compressed in the reflection process. One- and two-dimensional particle-in-cell simulations show that by this method, a pulse with a duration of tens of picoseconds in the mid- to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%, thereby making ultraintense few-cycle infrared pulses possible.
  • loading
  • [1]
    C. A. J. Palmer, N. P. Dover, I. Pogorelsky, M. Babzien, G. I. Dudnikova, M. Ispiriyan, M. N. Polyanskiy, J. Schreiber, P. Shkolnikov, V. Yakimenko, and Z. Najmudin, “Monoenergetic proton beams accelerated by a radiation pressure driven shock,” Phys. Rev. Lett. 106(1), 014801 (2011).10.1103/PhysRevLett.106.014801
    [2]
    T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287 (2012).10.1126/science.1218497
    [3]
    F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, “Spatiotemporal isolation of attosecond soft X-ray pulses in the water window,” Nat. Commun. 6(3), 6611 (2015).10.1038/ncomms7611
    [4]
    C. Hernández-García, J. A. Pérez-Hernández, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, A. Jaron-Becker, A. Becker, and L. Plaja, “Zeptosecond high harmonic keV x-ray waveforms driven by midinfrared laser pulses,” Phys. Rev. Lett. 111(3), 033002 (2013).10.1103/PhysRevLett.111.033002
    [5]
    J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).10.1038/nphoton.2014.256
    [6]
    [7]
    A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5(1), 8368 (2015).10.1038/srep08368
    [8]
    M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri, “Nonlinear phononics as an ultrafast route to lattice control,” Nat. Phys. 7(11), 854–856 (2011).10.1038/nphys2055
    [9]
    M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).10.1038/nature16528
    [10]
    C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).10.1038/nature10820
    [11]
    P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-µm holmium laser resonantly pumped by a diode-pumped 1.9-µm thulium laser,” Opt. Lett. 28(12), 1016 (2003).10.1364/ol.28.001016
    [12]
    L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates – 4.3 ps pulses at 2 μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).10.1364/ol.41.004668
    [13]
    K. Zhong, J. Q. Yao, D. G. Xu, J. L. Wang, J. S. Li, and P. Wang, “High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator,” Appl. Phys. B 100(4), 749–753 (2010).10.1007/s00340-010-3932-y
    [14]
    M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2,” Opt. Express 22(7), 8556–8564 (2014).10.1364/oe.22.008556
    [15]
    Q. Liu, J. Liu, Z. Zhang, and M. Gong, “A high energy 3.75 μm KTA optical parametric oscillator at a critical angle,” Laser Phys. Lett. 10(7), 075407 (2013).10.1088/1612-2011/10/7/075407
    [16]
    D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865 (2010).10.1364/oe.18.017865
    [17]
    F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, and R. Huber, “Single-cycle multiterahertz transients with peak fields above 10 MV/cm,” Opt. Lett. 35(15), 2645–2647 (2010).10.1364/ol.35.002645
    [18]
    F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(5), 807 (2012).10.1038/ncomms1816
    [19]
    J. J. Pigeon, S. Ya. Tochitsky, C. Gong, and C. Joshi, “Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses,” Opt. Lett. 39(11), 3246–3249 (2014).10.1364/ol.39.003246
    [20]
    Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20(22), 24741–24747 (2012).10.1364/oe.20.024741
    [21]
    T. Fuji, Y. Nomura, and H. Shirai, “Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700612 (2015).10.1109/jstqe.2015.2426415
    [22]
    J. J. Pigeon, S. Ya. Tochitsky, E. C. Welch, and C. Joshi, “Measurements of the nonlinear refractive index of air, N2, and O2 at 10 μm using four-wave mixing,” Opt. Lett. 41(17), 3924–3927 (2016).10.1364/ol.41.003924
    [23]
    I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).10.1038/nphoton.2015.179
    [24]
    P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).10.1038/nphoton.2017.34
    [25]
    Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).10.1038/s41566-018-0190-8
    [26]
    L. A. Johnson, D. F. Gordon, J. P. Palastro, and B. Hafizi, “Backward Raman amplification in the long-wavelength infrared,” Phys. Plasmas 24, 033107 (2017).10.1063/1.4976641
    [27]
    Z. Wu, Y. Zuo, X. Zeng, Z. Li, Z. Zhang, X. Wang, B. Hu, X. Wang, J. Mu, J. Su, Q. Zhu, and Y. Dai, “Laser compression via fast-extending plasma gratings,” Matter Radiat. Extremes 7, 064402 (2022).10.1063/5.0109574
    [28]
    C. Thaury and F. Quéré, “High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms,” J. Phys. B: At., Mol. Opt. Phys. 43, 213001 (2010).10.1088/0953-4075/43/21/213001
    [29]
    A. A. Andreev, C. Riconda, V. T. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).10.1063/1.2201896
    [30]
    C. Zhang, Z. Nie, Y. Wu, M. Sinclair, C.-K. Huang, K. A. Marsh, and C. Joshi, “Ionization induced plasma grating and its applications in strong-field ionization measurements,” Plasma Phys. Controlled Fusion 63, 095011 (2021).10.1088/1361-6587/ac1751
    [31]
    B. D. Layer, A. York, T. M. Antonsen, S. Varma, Y. H. Chen, Y. Leng, and H. M. Milchberg, “Ultrahigh-intensity optical slow-wave structure,” Phys. Rev. Lett. 99(3), 035001 (2007).10.1103/PhysRevLett.99.035001
    [32]
    C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Ultrahigh-intensity optical slow-wave structure,” Phys. Rev. Lett. 98(3), 033901 (2007).10.1103/physrevlett.98.033901
    [33]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).10.1088/0741-3335/57/11/113001
    [34]
    W. B. Mori, “Generation of tunable radiation using an underdense ionization front,” Phys. Rev. A 44(8), 5118 (1991).10.1103/physreva.44.5118
    [35]
    R. L. Savage, R. P. Brogle, Jr., W. B. Mori, and C. Joshi, “Frequency upshifting and pulse compression via underdense relativistic ionization fronts,” IEEE Trans. Plasma Sci. 21(1), 5 (1993).10.1109/27.221097
    [36]
    L. Oliveria e Silva and J. T. Mendonca, “Photon acceleration in superluminous and accelerated ionization fronts,” IEEE Trans. Plasma Sci. 24(2), 316 (1996).10.1109/27.509995
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (35) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return