Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Meier Thomas, Laniel Dominique, Trybel Florian. Direct hydrogen quantification in high-pressure metal hydrides[J]. Matter and Radiation at Extremes, 2023, 8(1): 018401. doi: 10.1063/5.0119159
Citation: Meier Thomas, Laniel Dominique, Trybel Florian. Direct hydrogen quantification in high-pressure metal hydrides[J]. Matter and Radiation at Extremes, 2023, 8(1): 018401. doi: 10.1063/5.0119159

Direct hydrogen quantification in high-pressure metal hydrides

doi: 10.1063/5.0119159
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: thomas.meier@hpstar.ac.cn
  • Received Date: 2022-08-08
  • Accepted Date: 2022-12-04
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • High-pressure metal hydride (MH) research evolved into a thriving field within condensed matter physics following the realization of metallic compounds showing phonon mediated near room-temperature superconductivity. However, severe limitations in determining the chemical formula of the reaction products, especially with regards to their hydrogen content, impedes a deep understanding of the synthesized phases and can lead to significantly erroneous conclusions. Here, we present a way to directly access the hydrogen content of MH solids synthesized at high pressures in (laser-heated) diamond anvil cells using nuclear magnetic resonance spectroscopy. We show that this method can be used to investigate MH compounds with a wide range of hydrogen content, from MHx with x = 0.15 (CuH0.15) to x ≲ 6.4 (H6±0.4S5).
  • loading
  • [1]
    V. Struzhkin, B. Li, C. Ji, X. J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H. K. Mao, “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736
    [2]
    N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).10.1103/PhysRevLett.92.187002
    [3]
    E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov, “A little bit of lithium does a lot for hydrogen,” Proc. Natl. Acad. Sci. U. S. A. 106, 17640 (2009).10.1073/pnas.0908262106
    [4]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
    [5]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [6]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021); arXiv:1909.10482.10.1038/s41467-021-25372-2
    [7]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019); arXiv:1808.07695.10.1103/PhysRevLett.122.027001
    [8]
    J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020); arXiv:1905.06693.10.1016/j.physrep.2020.02.003
    [9]
    A. R. Oganov and C. W. Glass, “Evolutionary crystal structure prediction as a tool in materials design,” J. Phys.: Condens. Matter 20, 064210 (2008).10.1088/0953-8984/20/6/064210
    [10]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.: Condens. Matter 23, 053201 (2011); arXiv:1101.3987.10.1088/0953-8984/23/5/053201
    [11]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
    [12]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57 (2020).10.1146/annurev-conmatphys-031218-013413
    [13]
    I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, “Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system,” Nature 532, 81 (2016).10.1038/nature17175
    [14]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressure,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [15]
    I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, “Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride,” Nature 578, 66 (2020).10.1038/s41586-020-1955-z
    [16]
    F. Belli, T. Novoa, J. Contreras-García, and I. Errea, “Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors,” Nat. Commun. 12, 5381 (2021); arXiv:2103.07320.10.1038/s41467-021-25687-0
    [17]
    C. Ji, B. Li, W. Liu, J. S. Smith, A. Björling, A. Majumdar, W. Luo, R. Ahuja, J. Shu, J. Wang, S. Sinogeikin, Y. Meng, V. B. Prakapenka, E. Greenberg, R. Xu, X. Huang, Y. Ding, A. Soldatov, W. Yang, G. Shen, W. L. Mao, and H. K. Mao, “Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen,” Matter Radiat. Extremes 5, 038401 (2020).10.1063/5.0003288
    [18]
    E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H. K. Mao, “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
    [19]
    R. Boehler, M. Guthrie, J. J. Molaison, A. M. dos Santos, S. Sinogeikin, S. Machida, N. Pradhan, and C. A. Tulk, “Large-volume diamond cells for neutron diffraction above 90 GPa,” High Pressure Res. 33, 546 (2013).10.1080/08957959.2013.823197
    [20]
    J. Binns, M. Peña-Alvarez, M.-E. Donnelly, E. Gregoryanz, R. T. Howie, and P. Dalladay-Simpson, “Structural studies on the Cu–H system under compression,” Engineering 5, 505 (2019).10.1016/j.eng.2019.03.001
    [21]
    M. Peña-Alvarez, J. Binns, A. Hermann, L. C. Kelsall, P. Dalladay-Simpson, E. Gregoryanz, and R. T. Howie, “Praseodymium polyhydrides synthesized at high temperatures and pressures,” Phys. Rev. B 100, 184109 (2019).10.1103/physrevb.100.184109
    [22]
    C. M. Pépin, G. Geneste, A. Dewaele, M. Mezouar, and P. Loubeyre, “Synthesis of FeH5: A layered structure with atomic hydrogen slabs,” Science 357, 382 (2017).10.1126/science.aan0961
    [23]
    C. Simmler, J. G. Napolitano, J. B. McAlpine, S.-N. Chen, and G. F. Pauli, “Universal quantitative NMR analysis of complex natural samples,” Curr. Opin. Biotechnol. 25, 51 (2014).10.1016/j.copbio.2013.08.004
    [24]
    P. Giraudeau, “Challenges and perspectives in quantitative NMR,” Magn. Reson. Chem. 55, 61 (2017).10.1002/mrc.4475
    [25]
    R. F. Evilia, “Quantitative NMR spectroscopy,” Anal. Lett. 34, 2227 (2001).10.1081/al-100107290
    [26]
    T. Meier, N. Wang, D. Mager, J. G. Korvink, S. Petitgirard, and L. Dubrovinsky, “Magnetic flux tailoring through lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance,” Sci. Adv. 3, eaao5242 (2017); arXiv:1706.00073.10.1126/sciadv.aao5242
    [27]
    T. Meier, S. Khandarkhaeva, S. Petitgirard, T. Körber, A. Lauerer, E. Rössler, and L. Dubrovinsky, “NMR at pressures up to 90 GPa,” J. Magn. Reson. 292, 44 (2018); arXiv:1803.05472.10.1016/j.jmr.2018.05.002
    [28]
    T. Meier, F. Trybel, S. Khandarkhaeva, G. Steinle-Neumann, S. Chariton, T. Fedotenko, S. Petitgirard, M. Hanfland, K. Glazyrin, N. Dubrovinskaia, and L. Dubrovinsky, “Pressure-induced hydrogen-hydrogen interaction in metallic FeH revealed by NMR,” Phys. Rev. X 9, 031008 (2019); arXiv:1902.03182.10.1103/physrevx.9.031008
    [29]
    T. Meier, “At its extremes: NMR at giga-pascal pressures,” in 93rd ed., Annual Reports on NMR Spectroscopy, 93rd ed., edited by G. Webb (Elsevier, London, 2018), Chap. 1, pp. 1–74.
    [30]
    T. Meier, “Journey to the centre of the Earth: Jules Vernes’ dream in the laboratory from an NMR perspective,” Prog. Nucl. Magn. Reson. Spectrosc. 106–107, 26 (2018); arXiv:1803.04643.10.1016/j.pnmrs.2018.04.001
    [31]
    D. Laniel, B. Winkler, E. Bykova, T. Fedotenko, S. Chariton, V. Milman, M. Bykov, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “Novel sulfur hydrides synthesized at extreme conditions,” Phys. Rev. B 102, 134109 (2020).10.1103/physrevb.102.134109
    [32]
    T. Meier, F. Trybel, G. Criniti, D. Laniel, S. Khandarkhaeva, E. Koemets, T. Fedotenko, K. Glazyrin, M. Hanfland, M. Bykov, G. Steinle-Neumann, N. Dubrovinskaia, and L. Dubrovinsky, “Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance,” Phys. Rev. B 102, 165109 (2020).10.1103/physrevb.102.165109
    [33]
    T. Fedotenko, L. Dubrovinsky, G. Aprilis, E. Koemets, A. Snigirev, I. Snigireva, A. Barannikov, P. Ershov, F. Cova, M. Hanfland, and N. Dubrovinskaia, “Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies,” Rev. Sci. Instrum 90(10), 104501 (2019).10.1063/1.5117786
    [34]
    T. Meier, A. Aslandukova, F. Trybel, D. Laniel, T. Ishii, S. Khandarkhaeva, N. Dubrovinskaia, and L. Dubrovinsky, “In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions,” Matter Radiat. Extremes 6, 068402 (2021).10.1063/5.0065879
    [35]
    T. Meier, “At its extremes: NMR at giga-pascal pressures,” in Annual Reports on NMR Spectroscopy, Vol. 94 (Elsevier, 2017).
    [36]
    D. I. Hoult and R. E. Richards, “The signal-to-noise ratio of the nuclear magnetic resonance experiment,” J. Magn. Reson. 24, 71–85 (1976).10.1016/0022-2364(76)90233-x
    [37]
    A. Abragam and L. C. Hebel, Am. J. Phys. 29, 860 (1961).10.1119/1.1937646
    [38]
    M. Freund, R. Csikós, S. Keszthelyi, and G. Mózes, “I. Chemical, crystallographical and physical properties of liquid paraffins and paraffin waxes,” Dev. Pet. Sci. 14, 13–140 (1982).10.1016/S0376-7361(08)70146-8
    [39]
    D. L. Dorset, “The crystal structure of waxes,” Acta Crystallogr., Sect. B: Struct. Sci. 51, 1021 (1995).10.1107/s0108768195005465
    [40]
    [41]
    O. Narygina, L. S. Dubrovinsky, C. A. McCammon, A. Kurnosov, I. Y. Kantor, V. B. Prakapenka, and N. A. Dubrovinskaia, “X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core,” Earth Planet. Sci. Lett. 307, 409 (2011).10.1016/j.epsl.2011.05.015
    [42]
    R. Burtovyy and M. Tkacz, “High-pressure synthesis of a new copper hydride from elements,” Solid State Commun. 131, 169 (2004).10.1016/j.ssc.2004.05.014
    [43]
    X.-D. Liu, P. Dalladay-Simpson, R. T. Howie, B. Li, and E. Gregoryanz, “Comment on ‘Observation of the Wigner-Huntington transition to metallic hydrogen,’” Science 357, eaan2286 (2017); arXiv:1704.07601.10.1126/science.aan2286
    [44]
    Q. Hu and H. K. Mao, “Role of hydrogen and proton transportation in Earth’s deep mantle,” Matter Radiat. Extremes 6, 068101 (2021).10.1063/5.0069643
    [45]
    F. Trybel, M. Cosacchi, T. Meier, V. M. Axt, and G. Steinle-Neumann, “Proton dynamics in high-pressure ice-VII from density functional theory,” Phys. Rev. B 102, 184310 (2020).10.1103/physrevb.102.184310
    [46]
    F. Trybel, T. Meier, B. Wang, and G. Steinle-Neumann, “Absence of proton tunneling during the hydrogen-bond symmetrization in delta-AlOOH,” Phys. Rev. B 104, 104311 (2021).10.1103/physrevb.104.104311
    [47]
    T. Meier, F. Trybel, S. Khandarkhaeva, D. Laniel, T. Ishii, A. Aslandukova, N. Dubrovinskaia, and L. Dubrovinsky, “Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions,” Nat. Commun. 13, 3042 (2022).10.1038/s41467-022-30662-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return