Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Samsonov A. S., Nerush E. N., Kostyukov I. Yu.. High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime[J]. Matter and Radiation at Extremes, 2023, 8(1): 014402. doi: 10.1063/5.0117504
Citation: Samsonov A. S., Nerush E. N., Kostyukov I. Yu.. High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime[J]. Matter and Radiation at Extremes, 2023, 8(1): 014402. doi: 10.1063/5.0117504

High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime

doi: 10.1063/5.0117504
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: asams@ipfran.ru
  • Received Date: 2022-08-01
  • Accepted Date: 2022-11-15
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • A system of reduced equations is proposed for electron motion in the strongly radiation-dominated regime for an arbitrary electromagnetic field configuration. The approach developed here is used to analyze various scenarios of electron dynamics in this regime: motion in rotating electric and magnetic fields and longitudinal acceleration in a plane wave and in a plasma wakefield. The results obtained show that this approach is able to describe features of electron dynamics that are essential in certain scenarios, but cannot be captured in the framework of the original radiation-free approximation [Samsonov et al., Phys. Rev. A 98 , 053858 (2018) and A. Gonoskov and M. Marklund, Phys. Plasmas 25 , 093109 (2018)]. The results are verified by numerical integration of the nonreduced equations of motion with account taken of radiation reaction in both semiclassical and fully quantum cases.
  • loading
  • [1]
    [2]
    Z. Gan, L. Yu, C. Wang, Y. Liu, Y. Xu, W. Li, S. Li, L. Yu, X. Wang, X. Liu et al., “The Shanghai Superintense Ultrafast Laser Facility (SULF) project,” in Progress in Ultrafast Intense Laser Science XVI (Springer, 2021), pp. 199–217.
    [3]
    B. Shao, Y. Li, Y. Peng, P. Wang, J. Qian, Y. Leng, and R. Li, “Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100 PW lasers,” Opt. Lett. 45, 2215–2218 (2020).10.1364/ol.390110
    [4]
    [5]
    J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. P. D. Mangles, “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020
    [6]
    K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan, M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P. Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J. Warwick, and M. Zepf, “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004
    [7]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, “Radiation reaction effects on radiation pressure acceleration,” New J. Phys. 12, 123005 (2010).10.1088/1367-2630/12/12/123005
    [8]
    M. Tamburini, T. V. Liseykina, F. Pegoraro, and A. Macchi, “Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations,” Phys. Rev. E 85, 016407 (2012).10.1103/PhysRevE.85.016407
    [9]
    I. Y. Kostyukov, E. N. Nerush, and A. G. Litvak, “Radiative damping in plasma-based accelerators,” Phys. Rev. Spec. Top.--Accel. Beams 15, 111001 (2012).10.1103/physrevstab.15.111001
    [10]
    R. Capdessus, E. d’Humières, and V. T. Tikhonchuk, “Modeling of radiation losses in ultrahigh power laser-matter interaction,” Phys. Rev. E 86, 036401 (2012).10.1103/PhysRevE.86.036401
    [11]
    R. Capdessus and P. McKenna, “Influence of radiation reaction force on ultraintense laser-driven ion acceleration,” Phys. Rev. E 91, 053105 (2015).10.1103/PhysRevE.91.053105
    [12]
    E. N. Nerush and I. Y. Kostyukov, “Laser-driven hole boring and gamma-ray emission in high-density plasmas,” Plasma Phys. Controlled Fusion 57, 035007 (2015).10.1088/0741-3335/57/3/035007
    [13]
    E. G. Gelfer, A. M. Fedotov, and S. Weber, “Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields,” Plasma Phys. Controlled Fusion 60, 064005 (2018).10.1088/1361-6587/aabb12
    [14]
    E. Gelfer, N. Elkina, and A. Fedotov, “Unexpected impact of radiation friction: Enhancing production of longitudinal plasma waves,” Sci. Rep. 8, 6478 (2018).10.1038/s41598-018-24930-x
    [15]
    E. G. Gelfer, A. M. Fedotov, and S. Weber, “Radiation induced acceleration of ions in a laser irradiated transparent foil,” New J. Phys. 23, 095002 (2021).10.1088/1367-2630/ac1a97
    [16]
    A. A. Golovanov, E. N. Nerush, and I. Y. Kostyukov, “Radiation reaction-dominated regime of wakefield acceleration,” New J. Phys. 24, 033011 (2022).10.1088/1367-2630/ac53b9
    [17]
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses,” Phys. Plasmas 23, 056706 (2016).10.1063/1.4950841
    [18]
    P. Zhang, C. P. Ridgers, and A. G. R. Thomas, “The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas,” New J. Phys. 17, 043051 (2015).10.1088/1367-2630/17/4/043051
    [19]
    [20]
    T. V. Liseykina, S. V. Popruzhenko, and A. Macchi, “Inverse Faraday effect driven by radiation friction,” New J. Phys. 18, 072001 (2016).10.1088/1367-2630/18/7/072001
    [21]
    T. V. Liseykina, A. Macchi, and S. V. Popruzhenko, “Quantum effects on radiation friction driven magnetic field generation,” Eur. Phys. J. Plus 136, 170 (2021).10.1140/epjp/s13360-020-01030-2
    [22]
    A. S. Samsonov, E. N. Nerush, and I. Y. Kostyukov, “Effect of electron–positron plasma production on the generation of a magnetic field in laser-plasma interactions,” Quantum Electron. 51, 861–865 (2021).10.1070/qel17601
    [23]
    D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, C. D. Murphy, J. G. Kirk, and C. P. Ridgers, “Spin polarization of electrons by ultraintense lasers,” Phys. Rev. A 96, 043407 (2017).10.1103/physreva.96.043407
    [24]
    D. Del Sorbo, D. Seipt, A. G. R. Thomas, and C. P. Ridgers, “Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers,” Plasma Phys. Controlled Fusion 60, 064003 (2018).10.1088/1361-6587/aab979
    [25]
    Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan, and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).10.1103/physrevlett.123.174801
    [26]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402 (2019).10.1103/physreva.100.061402
    [27]
    Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan, L. Zhang, J. Thomas, A. Hützen, M. Büscher, T. P. Rakitzis, A. Pukhov, B. Shen, and R. Li, “Polarized electron-beam acceleration driven by vortex laser pulses,” New J. Phys. 21, 073052 (2019).10.1088/1367-2630/ab2fd7
    [28]
    Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
    [29]
    Y.-F. Li, Y.-Y. Chen, W.-M. Wang, and H.-S. Hu, “Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field,” Phys. Rev. Lett. 125, 044802 (2020).10.1103/PhysRevLett.125.044802
    [30]
    F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams,” Phys. Lett. B 800, 135120 (2020).10.1016/j.physletb.2019.135120
    [31]
    Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, “Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization,” Phys. Rev. Lett. 127, 165002 (2021).10.1103/physrevlett.127.165002
    [32]
    E. N. Nerush and I. Yu. Kostyukov, “Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield,” Phys. Rev. E 75, 057401 (2007).10.1103/PhysRevE.75.057401
    [33]
    A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).10.1103/physrevlett.101.200403
    [34]
    E. N. Nerush, I. Y. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, and H. Ruhl, “Laser field absorption in self-generated electron-positron pair plasma,” Phys. Rev. Lett. 106, 035001 (2011).10.1103/PhysRevLett.106.035001
    [35]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [36]
    N. B. Narozhny and A. M. Fedotov, “Quantum-electrodynamic cascades in intense laser fields,” Phys.-Usp. 58, 95 (2015).10.3367/ufne.0185.201501i.0103
    [37]
    I. Y. Kostyukov and E. N. Nerush, “Production and dynamics of positrons in ultrahigh intensity laser-foil interactions,” Phys. Plasmas 23, 093119 (2016).10.1063/1.4962567
    [38]
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Seeded QED cascades in counterpropagating laser pulses,” Phys. Rev. E 95, 023210 (2017).10.1103/PhysRevE.95.023210
    [39]
    M. Jirka, O. Klimo, M. Vranic, S. Weber, and G. Korn, “QED cascade with 10 PW-class lasers,” Sci. Rep. 7, 15302 (2017).10.1038/s41598-017-15747-1
    [40]
    W. Luo, W.-Y. Liu, T. Yuan, M. Chen, J.-Y. Yu, F.-Y. Li, D. Del Sorbo, C. P. Ridgers, and Z.-M. Sheng, “QED cascade saturation in extreme high fields,” Sci. Rep. 8, 8400 (2018).10.1038/s41598-018-26785-8
    [41]
    T. Yuan, J. Y. Yu, W. Y. Liu, S. M. Weng, X. H. Yuan, W. Luo, M. Chen, Z. M. Sheng, and J. Zhang, “Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations,” Plasma Phys. Controlled Fusion 60, 065003 (2018).10.1088/1361-6587/aab3ba
    [42]
    D. Del Sorbo, D. R. Blackman, R. Capdessus, K. Small, C. Slade-Lowther, W. Luo, M. J. Duff, A. P. L. Robinson, P. McKenna, Z.-M. Sheng et al., “Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions,” New J. Phys. 20, 033014 (2018).10.1088/1367-2630/aaae61
    [43]
    Y. Lu, T.-P. Yu, L.-X. Hu, Z.-Y. Ge, W.-Q. Wang, J.-X. Liu, K. Liu, Y. Yin, and F.-Q. Shao, “Enhanced copious electron–positron pair production via electron injection from a mass-limited foil,” Plasma Phys. Controlled Fusion 60, 125008 (2018).10.1088/1361-6587/aae819
    [44]
    W. Luo, S.-D. Wu, W.-Y. Liu, Y.-Y. Ma, F.-Y. Li, T. Yuan, J.-Y. Yu, M. Chen, and Z.-M. Sheng, “Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target,” Plasma Phys. Controlled Fusion 60, 095006 (2018).10.1088/1361-6587/aad211
    [45]
    E. S. Efimenko, A. V. Bashinov, A. A. Gonoskov, S. I. Bastrakov, A. A. Muraviev, I. B. Meyerov, A. V. Kim, and A. M. Sergeev, “Laser-driven plasma pinching in e−e+ cascade,” Phys. Rev. E 99, 031201 (2019).10.1103/physreve.99.031201
    [46]
    A. S. Samsonov, E. N. Nerush, and I. Y. Kostyukov, “Laser-driven vacuum breakdown waves,” Sci. Rep. 9, 11133 (2019).10.1038/s41598-019-47355-6
    [47]
    A. S. Samsonov, I. Y. Kostyukov, and E. N. Nerush, “Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse,” Matter Radiat. Extremes 6, 034401 (2021).10.1063/5.0035347
    [48]
    [49]
    A. Nikishov and V. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field I,” Sov. Phys. JETP 19, 529–541 (1964).
    [50]
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, 1982).
    [51]
    V. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/bf01120220
    [52]
    M. K. Khokonov and H. Nitta, “Standard radiation spectrum of relativistic electrons: Beyond the synchrotron approximation,” Phys. Rev. Lett. 89, 094801 (2002).10.1103/PhysRevLett.89.094801
    [53]
    A. Ilderton, B. King, and D. Seipt, “Extended locally constant field approximation for nonlinear Compton scattering,” Phys. Rev. A 99, 042121 (2019).10.1103/physreva.99.042121
    [54]
    T. Heinzl, B. King, and A. MacLeod, “Locally monochromatic approximation to QED in intense laser fields,” Phys. Rev. A 102, 063110 (2020).10.1103/physreva.102.063110
    [55]
    E. G. Gelfer, A. M. Fedotov, A. A. Mironov, and S. Weber, “Nonlinear Compton scattering in time-dependent electric fields beyond the locally constant crossed field approximation,” Phys. Rev. D 106, 056013 (2022).10.1103/PhysRevD.106.056013 056013.
    [56]
    T. Podszus and A. Di Piazza, “High-energy behavior of strong-field QED in an intense plane wave,” Phys. Rev. D 99, 076004 (2019).10.1103/physrevd.99.076004
    [57]
    I. I. Artemenko, E. N. Nerush, and I. Yu. Kostyukov, “Quasiclassical approach to synergic synchrotron-cherenkov radiation in polarized vacuum,” New J. Phys 22, 093072 (2020).10.1088/1367-2630/abb388
    [58]
    J. G. Kirk, A. R. Bell, and I. Arka, “Pair production in counter-propagating laser beams,” Plasma Phys. Controlled Fusion 51, 085008 (2009).10.1088/0741-3335/51/8/085008
    [59]
    S. Bulanov, C. Schroeder, E. Esarey, and W. Leemans, “Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses,” Phys. Rev. A 87, 062110 (2013).10.1103/physreva.87.062110
    [60]
    T. Z. Esirkepov, S. S. Bulanov, J. K. Koga, M. Kando, K. Kondo, N. N. Rosanov, G. Korn, and S. V. Bulanov, “Attractors and chaos of electron dynamics in electromagnetic standing wave,” Phys. Lett. A 379, 2044 (2015).10.1016/j.physleta.2015.06.017
    [61]
    F. Niel, C. Riconda, F. Amiranoff, R. Duclous, and M. Grech, “From quantum to classical modeling of radiation reaction: A focus on stochasticity effects,” Phys. Rev. E 97, 043209 (2018).10.1103/PhysRevE.97.043209
    [62]
    A. Gonoskov, T. Blackburn, M. Marklund, and S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Mod. Phys 94, 045001 (2022).10.1103/RevModPhys.94.045001
    [63]
    C. S. Shen and D. White, “Energy straggling and radiation reaction for magnetic bremsstrahlung,” Phys. Rev. Lett. 28, 455 (1972).10.1103/physrevlett.28.455
    [64]
    R. Duclous, J. G. Kirk, and A. R. Bell, “Monte Carlo calculations of pair production in high-intensity laser–plasma interactions,” Plasma Phys. Controlled Fusion 53, 015009 (2010).10.1088/0741-3335/53/1/015009
    [65]
    C. N. Harvey, A. Gonoskov, A. Ilderton, and M. Marklund, “Quantum quenching of radiation losses in short laser pulses,” Phys. Rev. Lett. 118, 105004 (2017).10.1103/physrevlett.118.105004
    [66]
    N. Neitz and A. Di Piazza, “Stochasticity effects in quantum radiation reaction,” Phys. Rev. Lett. 111, 054802 (2013).10.1103/PhysRevLett.111.054802
    [67]
    C. P. Ridgers, T. G. Blackburn, D. Del Sorbo, L. E. Bradley, C. Slade-Lowther, C. D. Baird, S. P. D. Mangles, P. McKenna, M. Marklund, C. D. Murphy, and A. G. R. Thomas, “Signatures of quantum effects on radiation reaction in laser–electron-beam collisions,” J. Plasma Phys. 83, 715830502 (2017).10.1017/s0022377817000642
    [68]
    W. Gerlach and O. Stern, “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld,” Z. Phys. 9, 349–352 (1922).10.1007/bf01326983
    [69]
    L. H. Thomas, “The motion of the spinning electron,” Nature 117, 514 (1926).10.1038/117514a0
    [70]
    V. Bargmann, L. Michel, and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2, 435 (1959).10.1103/physrevlett.2.435
    [71]
    S. R. Mane, Yu. M. Shatunov, and K. Yokoya, “Spin-polarized charged particle beams in high-energy accelerators,” Rep. Prog. Phys 68, 1997 (2005).10.1088/0034-4885/68/9/r01
    [72]
    D. Seipt, C. P. Ridgers, D. Del Sorbo, and A. G. R. Thomas, “Polarized QED cascades,” New J. Phys. 23, 053025 (2021).10.1088/1367-2630/abf584
    [73]
    M. Wen, M. Tamburini, and C. H. Keitel, “Polarized laser-wakefield-accelerated kiloampere electron beams,” Phys. Rev. Lett. 122, 214801 (2019).10.1103/physrevlett.122.214801
    [74]
    A. S. Samsonov, E. N. Nerush, and I. Y. Kostyukov, “Asymptotic electron motion in the strongly-radiation-dominated regime,” Phys. Rev. A 98, 053858 (2018).10.1103/physreva.98.053858
    [75]
    A. Gonoskov and M. Marklund, “Radiation-dominated particle and plasma dynamics,” Phys. Plasmas 25, 093109 (2018).10.1063/1.5047799
    [76]
    P. Jérôme, “Particle acceleration and radiation reaction in a strongly magnetised rotating dipole,” Astron. Astrophys 666, A5 (2022).10.1051/0004-6361/202243634
    [77]
    [78]
    Y. B. Zel’dovich, “Interaction of free electrons with electromagnetic radiation,” Sov. Phys. Usp 18, 79 (1975).10.1070/PU1975v018n02ABEH001947
    [79]
    L. D. Landau, The Classical Theory of Fields (Elsevier, 2013), Vol. 2.
    [80]
    A. D. Piazza, “Exact solution of the Landau-Lifshitz equation in a plane wave,” Lett. Math. Phys. 83, 305–313 (2008).10.1007/s11005-008-0228-9
    [81]
    J. E. Gunn and J. P. Ostriker, “On the motion and radiation of charged particles in strong electromagnetic waves. I. Motion in plane and spherical waves,” Astrophys. J. 165, 523 (1971).10.1086/150919
    [82]
    M. Grewing, E. Schrüfer, and H. Heintzmann, “Acceleration of charged particles and radiation reaction in strong plane and spherical waves. II,” Z. Phys. A: Hadrons Nucl. 260, 375–384 (1973).10.1007/bf01397962
    [83]
    [84]
    R. Ekman, T. Heinzl, and A. Ilderton, “Exact solutions in radiation reaction and the radiation-free direction,” New J. Phys. 23, 055001 (2021).10.1088/1367-2630/abfab2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (49) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return