Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Mikheytsev Nikita A., Korzhimanov Artem V.. Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas[J]. Matter and Radiation at Extremes, 2023, 8(2): 024001. doi: 10.1063/5.0116660
Citation: Mikheytsev Nikita A., Korzhimanov Artem V.. Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas[J]. Matter and Radiation at Extremes, 2023, 8(2): 024001. doi: 10.1063/5.0116660

Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas

doi: 10.1063/5.0116660
More Information
  • Corresponding author: b)Author to whom correspondence should be addressed: artem.korzhimanov@ipfran.ru
  • Received Date: 2022-07-29
  • Accepted Date: 2022-12-25
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density, the Doppler frequency shift leads to generation of intense radiation in both the high-frequency (up to the x-ray) and low-frequency (mid-infrared) ranges. The efficiency of energy conversion into the wavelength range above 3 µm can reach several percent, which makes it possible to obtain relativistically intense pulses in the mid-infrared range. These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges, which opens up opportunities for high-precision pump–probe measurements, in particular, laser-induced electron diffraction and transient absorption spectroscopy.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Nikita A. Mikheytsev: Software (lead); Visualization (lead); Writing – review & editing (equal). Artem V. Korzhimanov: Conceptualization (lead); Funding acquisition (lead); Project administration (lead); Supervision (lead); Writing – original draft (lead); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    a)Electronic mail: mikheytsev@rf.unn.ru
  • loading
  • [1]
    C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52
    [2]
    J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz,” Opt. Lett. 42, 2058 (2017).10.1364/ol.42.002058
    [3]
    F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey, A. Pellegrina, C. Richard, L. Boudjemaa, C. Simon-Boisson, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, B. D. Boisdeffre, P. Ghenuche, A. Naziru, G. Kolliopoulos, L. Neagu, R. Dabu, I. Dancus, and D. Ursescu, “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, e43 (2020).10.1017/hpl.2020.41
    [4]
    C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps, S. David, J. Barbe, E. Etter, G. Matras, S. Ricaud, V. Leroux, C. Richard, F. Lureau, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, C. Capiteanu, A. Naziru, B. Diaconescu, V. Iancu, R. Dabu, D. Ursescu, I. Dancus, C. A. Ur, K. A. Tanaka, and N. V. Zamfir, “10 PW peak power femtosecond laser pulses at ELI-NP,” High Power Laser Sci. Eng. 10, e21 (2022).10.1017/hpl.2022.11
    [5]
    J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412 (2019).10.1364/oe.27.020412
    [6]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630 (2021).10.1364/optica.420520
    [7]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
    [8]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751
    [9]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1–48 (2013).10.1103/revmodphys.85.1
    [10]
    F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58, 103001 (2016).10.1088/0741-3335/58/10/103001
    [11]
    B. Dromey, S. Kar, C. Bellei, D. C. Carroll, R. J. Clarke, J. S. Green, S. Kneip, K. Markey, S. R. Nagel, P. T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P. A. Norreys, and M. Zepf, “Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces,” Phys. Rev. Lett. 99, 085001 (2007).10.1103/PhysRevLett.99.085001
    [12]
    U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).10.1103/revmodphys.81.445
    [13]
    J. Yoshii, C. H. Lai, T. Katsouleas, C. Joshi, and W. B. Mori, “Radiation from Cerenkov wakes in a magnetized plasma,” Phys. Rev. Lett. 79, 4194–4197 (1997).10.1103/physrevlett.79.4194
    [14]
    W. P. Leemans, C. G. Geddes, J. Faure, C. Tóth, J. van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd, and M. C. Martin, “Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary,” Phys. Rev. Lett. 91, 074802 (2003).10.1103/PhysRevLett.91.074802
    [15]
    A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H. G. Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).10.1103/PhysRevLett.111.074802
    [16]
    G. Q. Liao, Y. T. Li, C. Li, L. N. Su, Y. Zheng, M. Liu, W. M. Wang, Z. D. Hu, W. C. Yan, J. Dunn, J. Nilsen, J. Hunter, Y. Liu, X. Wang, L. M. Chen, J. L. Ma, X. Lu, Z. Jin, R. Kodama, Z. M. Sheng, and J. Zhang, “Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses,” Phys. Rev. Lett. 114, 255001 (2015).10.1103/physrevlett.114.255001
    [17]
    G.-Q. Liao, Y.-T. Li, Y.-H. Zhang, H. Liu, X.-L. Ge, S. Yang, W.-Q. Wei, X.-H. Yuan, Y.-Q. Deng, B.-J. Zhu, Z. Zhang, W.-M. Wang, Z.-M. Sheng, L.-M. Chen, X. Lu, J.-L. Ma, X. Wang, and J. Zhang, “Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions,” Phys. Rev. Lett. 116, 205003 (2016).10.1103/physrevlett.116.205003
    [18]
    K. B. Kwon, T. Kang, H. S. Song, Y.-K. Kim, B. Ersfeld, D. A. Jaroszynski, and M. S. Hur, “High-energy, short-duration bursts of coherent terahertz radiation from an embedded plasma dipole,” Sci. Rep. 8, 145 (2018).10.1038/s41598-017-18399-3
    [19]
    J. Déchard, A. Debayle, X. Davoine, L. Gremillet, and L. Bergé, “Terahertz pulse generation in underdense relativistic plasmas: From photoionization-induced radiation to coherent transition radiation,” Phys. Rev. Lett. 120, 144801 (2018).10.1103/physrevlett.120.144801
    [20]
    S. Herzer, A. Woldegeorgis, J. Polz, A. Reinhard, M. Almassarani, B. Beleites, F. Ronneberger, R. Grosse, G. G. Paulus, U. Hübner, T. May, and A. Gopal, “An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities,” New J. Phys. 20, 063019 (2018).10.1088/1367-2630/aaada0
    [21]
    J. Déchard, X. Davoine, and L. Bergé, “THz generation from relativistic plasmas driven by near- to far-infrared laser pulses,” Phys. Rev. Lett. 123, 264801 (2019).10.1103/physrevlett.123.264801
    [22]
    Y. Zeng, C. Zhou, L. Song, X. Lu, Z. Li, Y. Ding, Y. Bai, Y. Xu, Y. Leng, Y. Tian, J. Liu, R. Li, and Z. Xu, “Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets,” Opt. Express 28, 15258 (2020).10.1364/oe.390764
    [23]
    Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12, 489–494 (2018).10.1038/s41566-018-0190-8
    [24]
    X.-L. Zhu, M. Chen, S.-M. Weng, P. McKenna, Z.-M. Sheng, and J. Zhang, “Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 μm,” Phys. Rev. Appl. 12, 054024 (2019).10.1103/physrevapplied.12.054024
    [25]
    V. V. Kulagin, V. N. Kornienko, V. A. Cherepenin, D. N. Gupta, and H. Suk, “Characteristics of quasi-unipolar electromagnetic pulses formed in the interaction of high-power laser pulses with nanoscale targets,” Quantum Electron. 49, 788–795 (2019).10.1070/qel16929
    [26]
    Z. Nie, C.-H. Pai, J. Zhang, X. Ning, J. Hua, Y. He, Y. Wu, Q. Su, S. Liu, Y. Ma, Z. Cheng, W. Lu, H.-H. Chu, J. Wang, C. Zhang, W. B. Mori, and C. Joshi, “Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses,” Nat. Commun. 11, 2787 (2020).10.1038/s41467-020-16541-w
    [27]
    A. A. Golovanov and I. Y. Kostyukov, “Generation of IR radiation in the interaction of an ultrashort laser pulse with a gas jet,” Quantum Electron. 51, 850–853 (2021).10.1070/qel17619
    [28]
    V. V. Kulagin, V. N. Kornienko, V. A. Cherepenin, D. N. Gupta, and H. Suk, “Generation of intense coherent electromagnetic radiation during the interaction of a multi-terawatt laser pulse with a nanowire target,” Quantum Electron. 51, 323–332 (2021).10.1070/qel17504
    [29]
    E. Siminos, I. Thiele, and C. Olofsson, “Laser wakefield driven generation of isolated carrier-envelope-phase tunable intense subcycle pulses,” Phys. Rev. Lett. 126, 044801 (2021).10.1103/PhysRevLett.126.044801
    [30]
    X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas,” Matter Radiat. Extremes 7, 014403 (2022).10.1063/5.0068265
    [31]
    A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: New spatiotemporal dynamics of high-power electromagnetic fields,” Phys.-Usp. 58, 89–94 (2015).10.3367/ufne.0185.201501h.0097
    [32]
    D. J. Wilson, A. M. Summers, S. Zigo, B. Davis, S.-J. Robatjazi, J. A. Powell, D. Rolles, A. Rudenko, and C. A. Trallero-Herrero, “An intense, few-cycle source in the long-wave infrared,” Sci. Rep. 9, 6002 (2019).10.1038/s41598-019-42433-1
    [33]
    A. V. Mitrofanov, D. A. Sidorov-Biryukov, P. B. Glek, M. V. Rozhko, E. A. Stepanov, A. D. Shutov, S. V. Ryabchuk, A. A. Voronin, A. B. Fedotov, and A. M. Zheltikov, “Chirp-controlled high-harmonic and attosecond-pulse generation via coherent-wake plasma emission driven by mid-infrared laser pulses,” Opt. Lett. 45, 750 (2020).10.1364/ol.45.000750
    [34]
    A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, A. A. Voronin, P. B. Glek, S. V. Ryabchuk, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, “Relativistic nonlinear optical phenomena in the field of subterawatt laser pulses,” JETP Lett. 112, 17–23 (2020).10.1134/s0021364020130093
    [35]
    A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, M. V. Rozhko, P. B. Glek, M. M. Nazarov, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of plasma nonlinearities and generation of a microwave–terahertz supercontinuum in the field of subterawatt mid-infrared pulses,” JETP Lett. 113, 301–307 (2021).10.1134/s0021364021050076
    [36]
    V. V. Meshcherinov, M. V. Spiridonov, V. A. Kazakov, and A. V. Rodin, “Lidar-based remote infrared gas sensor for monitoring anthropogenic pollution: A proof of concept,” Quantum Electron. 50, 1055–1062 (2020).10.1070/qel17398
    [37]
    M. G. Pullen, B. Wolter, A.-T. Le, M. Baudisch, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, C. D. Lin, and J. Biegert, “Imaging an aligned polyatomic molecule with laser-induced electron diffraction,” Nat. Commun. 6, 7262 (2015).10.1038/ncomms8262
    [38]
    M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).10.1038/nature11720
    [39]
    H.-T. Chang, A. Guggenmos, S. K. Cushing, Y. Cui, N. U. Din, S. R. Acharya, I. J. Porter, U. Kleineberg, V. Turkowski, T. S. Rahman, D. M. Neumark, and S. R. Leone, “Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy,” Phys. Rev. B 103, 064305 (2021).10.1103/physrevb.103.064305
    [40]
    S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745–757 (1994).10.1063/1.870766
    [41]
    N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).10.1103/PhysRevLett.92.063902
    [42]
    J. H. Bin, M. Yeung, Z. Gong, H. Y. Wang, C. Kreuzer, M. L. Zhou, M. J. V. Streeter, P. S. Foster, S. Cousens, B. Dromey, J. Meyer-Ter-Vehn, M. Zepf, and J. Schreiber, “Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma,” Phys. Rev. Lett. 120, 074801 (2018).10.1103/PhysRevLett.120.074801
    [43]
    P. Hilz, T. M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Gebhard, D. Haffa, J. Hartmann, T. Kluge, F. H. Lindner, P. Neumayr, C. G. Schaefer, U. Schramm, P. G. Thirolf, T. F. Rösch, F. Wagner, B. Zielbauer, and J. Schreiber, “Isolated proton bunch acceleration by a petawatt laser pulse,” Nat. Commun. 9, 423 (2018).10.1038/s41467-017-02663-1
    [44]
    W. J. Ma, I. J. Kim, J. Q. Yu, I. W. Choi, P. K. Singh, H. W. Lee, J. H. Sung, S. K. Lee, C. Lin, Q. Liao, J. G. Zhu, H. Y. Lu, B. Liu, H. Y. Wang, R. F. Xu, X. T. He, J. E. Chen, M. Zepf, J. Schreiber, X. Q. Yan, and C. H. Nam, “Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil,” Phys. Rev. Lett. 122, 014803 (2019).10.1103/PhysRevLett.122.014803
    [45]
    N. Zhao, J. Jiao, D. Xie, H. Zhou, S. Zhang, Y. Lang, D. Zou, and H. Zhuo, “Near-100 MeV proton acceleration from 1021 W/cm2 laser interacting with near-critical density plasma,” High Energy Density Phys. 37, 100889 (2020).10.1016/j.hedp.2020.100889
    [46]
    S. Shokita, A. Yogo, S. R. Mirfayzi, Y. Honoki, D. Golovin, T. Ishimoto, Z. Lan, K. Matsuo, T. Mori, K. Okamoto, H. Nagatomo, H. Nishimura, Y. Sentoku, K. Yamanoi, and R. Kodama, “Observation of MeV-energy ions from the interaction of over picosecond laser pulses with near-critical density foam targets,” High Energy Density Phys. 36, 100821 (2020).10.1016/j.hedp.2020.100821
    [47]
    I. Göthel, C. Bernert, M. Bussmann, M. Garten, T. Miethlinger, M. Rehwald, K. Zeil, T. Ziegler, T. E. Cowan, U. Schramm, and T. Kluge, “Optimized laser ion acceleration at the relativistic critical density surface,” Plasma Phys. Controlled Fusion 64, 044010 (2022).10.1088/1361-6587/ac4e9f
    [48]
    A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, M. Marklund, and A. M. Sergeev, “Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses,” Phys. Rev. E 84, 046403 (2011).10.1103/PhysRevE.84.046403
    [49]
    A. Gonoskov, “Theory of relativistic radiation reflection from plasmas,” Phys. Plasmas 25, 013108 (2018).10.1063/1.5000785
    [50]
    I. A. Surmin, S. I. Bastrakov, E. S. Efimenko, A. A. Gonoskov, A. V. Korzhimanov, and I. B. Meyerov, “Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors,” Comput. Phys. Commun. 202, 204–210 (2016).10.1016/j.cpc.2016.02.004
    [51]
    V. I. Eremin, A. V. Korzhimanov, and A. V. Kim, “Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation,” Phys. Plasmas 17, 043102 (2010).10.1063/1.3368791
    [52]
    E. Siminos, M. Grech, S. Skupin, T. Schlegel, and V. T. Tikhonchuk, “Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions,” Phys. Rev. E 86, 056404 (2012).10.1103/PhysRevE.86.056404
    [53]
    E. Siminos, M. Grech, B. S. Wettervik, and T. Fülöp, “Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration,” New J. Phys. 19, 123042 (2017).10.1088/1367-2630/aa8e66
    [54]
    N. A. Mikheitsev and A. V. Korzhimanov, “Effect of finite ion mass on relativistic self-induced transparency of plasma layers with a sharp boundary,” Quantum Electron. 50, 776–781 (2020).10.1070/qel17370
    [55]
    S. V. Bulanov, N. M. Naumova, T. Z. Esirkepov, and F. Pegoraro, “Evolution of the frequency spectrum of a relativistically strong laser pulse in a plasma,” Phys. Scr. 1996, 258.10.1088/0031-8949/1996/t63/045
    [56]
    A. Sakharov, N. Naumova, and S. Bulanov, “Spectra of backward stimulated Raman scattering of short relativistically strong laser pulses in an underdense plasma,” Plasma Phys. Rep. 24, 818–824 (1998).
    [57]
    J. G. Moreau, E. d’Humières, R. Nuter, and V. T. Tikhonchuk, “Stimulated Raman scattering in the relativistic regime in near-critical plasmas,” Phys. Rev. E 95, 013208 (2017).10.1103/PhysRevE.95.013208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (74) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return