Citation: | Fu J. Y., Zhang H. S., Cai H. B., Yao P. L., Zhu S. P.. Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability[J]. Matter and Radiation at Extremes, 2023, 8(1): 016901. doi: 10.1063/5.0106832 |
[1] |
G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192 (1950).10.1098/rspa.1950.0052
|
[2] |
L. Rayleigh, Scientific Papers (Cambridge University Press, Cambridge, UK, 1900), Vol. II, p. 200.
|
[3] |
J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998), p. 11.
|
[4] |
V. N. Gamezo, A. M. Khokhlov, E. S. Oran, A. Y. Chtchelkanova, and R. O. Rosenberg, “Thermonuclear supernovae: Simulations of the deflagration stage and their implications,” Science 299, 77 (2003).10.1126/science.1078129
|
[5] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
|
[6] |
A. R. Bell, “Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays,” Mon. Not. R. Astron. Soc. 353, 550 (2004).10.1111/j.1365-2966.2004.08097.x
|
[7] |
S. E. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761 (1974).10.1103/physrevlett.33.761
|
[8] |
H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676 (1985).10.1063/1.865099
|
[9] |
J. Sanz, “Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73, 2700 (1994).10.1103/physrevlett.73.2700
|
[10] |
R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability,” Phys. Plasmas 2, 3844 (1995).10.1063/1.871083
|
[11] |
V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self‐consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3, 4665 (1996).10.1063/1.872078
|
[12] |
R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
|
[13] |
J. Sanz, R. Betti, R. Ramis, and J. Ramírez, “Nonlinear theory of the ablative Rayleigh–Taylor instability,” Plasma Phys. Controlled Fusion 46, B367 (2004).10.1088/0741-3335/46/12b/032
|
[14] |
H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97, 011203(R) (2018).10.1103/PhysRevE.97.011203
|
[15] |
D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
|
[16] |
V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
|
[17] |
D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, “Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws,” Phys. Plasmas 8, 2883 (2001).10.1063/1.1362529
|
[18] |
S. I. Sohn, “Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 69, 036703 (2004).10.1103/PhysRevE.69.036703
|
[19] |
X. He, R. Zhang, S. Chen, and G. D. Doolen, “On the three-dimensional Rayleigh–Taylor instability,” Phys. Fluids 11, 1143 (1999).10.1063/1.869984
|
[20] |
P. Ramaprabhu and G. Dimonte, “Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio,” Phys. Rev. E 71, 036314 (2005).10.1103/PhysRevE.71.036314
|
[21] |
P. Ramaprabhu, G. Dimonte, P. Woodward, C. Fryer, G. Rockefeller et al., “The late-time dynamics of the single-mode Rayleigh-Taylor instability,” Phys. Fluids 24, 074107 (2012).10.1063/1.4733396
|
[22] |
J. P. Wilkinson and J. W. Jacobs, “Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability,” Phys. Fluids 19, 124102 (2007).10.1063/1.2813548
|
[23] |
R. Betti and J. Sanz, “Bubble acceleration in the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 97, 205002 (2006).10.1103/physrevlett.97.205002
|
[24] |
R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, “Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability,” Phys. Plasmas 23, 022701 (2016).10.1063/1.4940917
|
[25] |
T. Wei and D. Livescu, “Late-time quadratic growth in single-mode Rayleigh-Taylor instability,” Phys. Rev. E 86, 046405 (2012).10.1103/PhysRevE.86.046405
|
[26] |
A. Hamzehloo, P. Bartholomew, and S. Laizet, “Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers,” Phys. Fluids 33, 054114 (2021).10.1063/5.0049867
|
[27] |
L. Duchemin, C. Josserand, and P. Clavin, “Asymptotic behavior of the Rayleigh-Taylor instability,” Phys. Rev. Lett. 94, 224501 (2005).10.1103/physrevlett.94.224501
|
[28] |
J. O. Kane, H. F. Robey, B. A. Remington, R. P. Drake, J. Knauer et al., “Interface imprinting by a rippled shock using an intense laser,” Phys. Rev. E 63, 055401(R) (2001).10.1103/PhysRevE.63.055401
|
[29] |
A. Casner, V. A. Smalyuk, L. Masse, I. Igumenshchev, S. Liberatore et al., “Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility,” Phys. Plasmas 19, 082708 (2012).10.1063/1.4737901
|
[30] |
L. F. Wang, W. H. Ye, X. T. He, W. Y. Zhang, Z. M. Sheng et al., “Formation of jet-like spikes from the ablative Rayleigh-Taylor instability,” Phys. Plasmas 19, 100701 (2012).10.1063/1.4759161
|
[31] |
J. Sanz, J. Ramírez, R. Ramis, R. Betti, and R. P. J. Town, “Nonlinear theory of the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 89, 195002 (2002).10.1103/physrevlett.89.195002
|
[32] |
W. H. Ye, L. F. Wang, and X. T. He, “Spike deceleration and bubble acceleration in the ablative Rayleigh–Taylor instability,” Phys. Plasmas 17, 122704 (2010).10.1063/1.3497006
|
[33] |
K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers,” Phys. Rev. E 67, 026319 (2003).10.1103/PhysRevE.67.026319
|
[34] |
K. O. Mikaelian, “Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings,” Phys. Rev. E 89, 053009 (2014).10.1103/PhysRevE.89.053009
|
[35] |
L. Spitzer and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).10.1103/physrev.89.977
|
[36] |
J. Xin, R. Yan, Z.-H. Wan, D.-J. Sun, J. Zheng et al., “Two mode coupling of the ablative Rayleigh-Taylor instabilities,” Phys. Plasmas 26, 032703 (2019).10.1063/1.5070103
|
[37] |
H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121, 185002 (2018).10.1103/physrevlett.121.185002
|
[38] |
H. Zhang, R. Betti, R. Yan, and H. Aluie, “Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion,” Phys. Plasmas 27, 122701 (2020).10.1063/5.0023541
|
[39] |
P. W. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8, 2315 (2001).10.1063/1.1350571
|
[40] |
X. Bian, H. Aluie, D. Zhao, H. Zhang, and D. Livescu, “Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity,” Physica D 403, 132250 (2020).10.1016/j.physd.2019.132250
|
[41] |
L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, “Destabilizing effect of density gradient on the Kelvin–Helmholtz instability,” Phys. Plasmas 16, 112104 (2009).10.1063/1.3255622
|
[42] |
L. F. Wang, W. H. Ye, and Y. J. Li, “Numerical investigation on the ablative Kelvin-Helmholtz instability,” Europhys. Lett. 87, 54005 (2009).10.1209/0295-5075/87/54005
|