Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Fu J. Y., Zhang H. S., Cai H. B., Yao P. L., Zhu S. P.. Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability[J]. Matter and Radiation at Extremes, 2023, 8(1): 016901. doi: 10.1063/5.0106832
Citation: Fu J. Y., Zhang H. S., Cai H. B., Yao P. L., Zhu S. P.. Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability[J]. Matter and Radiation at Extremes, 2023, 8(1): 016901. doi: 10.1063/5.0106832

Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability

doi: 10.1063/5.0106832
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zhang_huasen@hotmail.com
  • Received Date: 2022-06-30
  • Accepted Date: 2022-11-30
  • Available Online: 2023-01-01
  • Publish Date: 2023-01-01
  • The effect of ablation on the nonlinear spike growth of single-mode ablative Rayleigh–Taylor instability (RTI) is studied by two-dimensional numerical simulations. It is shown that the ablation can reduce the quasi-constant velocity and significantly suppress the reacceleration of the spike in the nonlinear phase. It is also shown that the spike growth can affect the ablation-generated vorticity inside the bubble, which further affects the nonlinear bubble acceleration. The vorticity evolution is found to be correlated with the mixing width (i.e., the sum of the bubble and spike growths) for a given wave number and ablation velocity. By considering the effects of mass ablation and vorticity, an analytical model for the nonlinear bubble and spike growth of single-mode ablative RTI is developed in this study. It is found that the nonlinear growth of the mixing width, induced by the single mode, is dominated by the bubble growth for small-scale ablative RTI, whereas it is dominated by the spike growth for classical RTI.
  • loading
  • [1]
    G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192 (1950).10.1098/rspa.1950.0052
    [2]
    L. Rayleigh, Scientific Papers (Cambridge University Press, Cambridge, UK, 1900), Vol. II, p. 200.
    [3]
    J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998), p. 11.
    [4]
    V. N. Gamezo, A. M. Khokhlov, E. S. Oran, A. Y. Chtchelkanova, and R. O. Rosenberg, “Thermonuclear supernovae: Simulations of the deflagration stage and their implications,” Science 299, 77 (2003).10.1126/science.1078129
    [5]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [6]
    A. R. Bell, “Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays,” Mon. Not. R. Astron. Soc. 353, 550 (2004).10.1111/j.1365-2966.2004.08097.x
    [7]
    S. E. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761 (1974).10.1103/physrevlett.33.761
    [8]
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676 (1985).10.1063/1.865099
    [9]
    J. Sanz, “Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73, 2700 (1994).10.1103/physrevlett.73.2700
    [10]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability,” Phys. Plasmas 2, 3844 (1995).10.1063/1.871083
    [11]
    V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self‐consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3, 4665 (1996).10.1063/1.872078
    [12]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
    [13]
    J. Sanz, R. Betti, R. Ramis, and J. Ramírez, “Nonlinear theory of the ablative Rayleigh–Taylor instability,” Plasma Phys. Controlled Fusion 46, B367 (2004).10.1088/0741-3335/46/12b/032
    [14]
    H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97, 011203(R) (2018).10.1103/PhysRevE.97.011203
    [15]
    D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
    [16]
    V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
    [17]
    D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, “Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws,” Phys. Plasmas 8, 2883 (2001).10.1063/1.1362529
    [18]
    S. I. Sohn, “Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 69, 036703 (2004).10.1103/PhysRevE.69.036703
    [19]
    X. He, R. Zhang, S. Chen, and G. D. Doolen, “On the three-dimensional Rayleigh–Taylor instability,” Phys. Fluids 11, 1143 (1999).10.1063/1.869984
    [20]
    P. Ramaprabhu and G. Dimonte, “Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio,” Phys. Rev. E 71, 036314 (2005).10.1103/PhysRevE.71.036314
    [21]
    P. Ramaprabhu, G. Dimonte, P. Woodward, C. Fryer, G. Rockefeller et al., “The late-time dynamics of the single-mode Rayleigh-Taylor instability,” Phys. Fluids 24, 074107 (2012).10.1063/1.4733396
    [22]
    J. P. Wilkinson and J. W. Jacobs, “Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability,” Phys. Fluids 19, 124102 (2007).10.1063/1.2813548
    [23]
    R. Betti and J. Sanz, “Bubble acceleration in the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 97, 205002 (2006).10.1103/physrevlett.97.205002
    [24]
    R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, “Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability,” Phys. Plasmas 23, 022701 (2016).10.1063/1.4940917
    [25]
    T. Wei and D. Livescu, “Late-time quadratic growth in single-mode Rayleigh-Taylor instability,” Phys. Rev. E 86, 046405 (2012).10.1103/PhysRevE.86.046405
    [26]
    A. Hamzehloo, P. Bartholomew, and S. Laizet, “Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers,” Phys. Fluids 33, 054114 (2021).10.1063/5.0049867
    [27]
    L. Duchemin, C. Josserand, and P. Clavin, “Asymptotic behavior of the Rayleigh-Taylor instability,” Phys. Rev. Lett. 94, 224501 (2005).10.1103/physrevlett.94.224501
    [28]
    J. O. Kane, H. F. Robey, B. A. Remington, R. P. Drake, J. Knauer et al., “Interface imprinting by a rippled shock using an intense laser,” Phys. Rev. E 63, 055401(R) (2001).10.1103/PhysRevE.63.055401
    [29]
    A. Casner, V. A. Smalyuk, L. Masse, I. Igumenshchev, S. Liberatore et al., “Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility,” Phys. Plasmas 19, 082708 (2012).10.1063/1.4737901
    [30]
    L. F. Wang, W. H. Ye, X. T. He, W. Y. Zhang, Z. M. Sheng et al., “Formation of jet-like spikes from the ablative Rayleigh-Taylor instability,” Phys. Plasmas 19, 100701 (2012).10.1063/1.4759161
    [31]
    J. Sanz, J. Ramírez, R. Ramis, R. Betti, and R. P. J. Town, “Nonlinear theory of the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 89, 195002 (2002).10.1103/physrevlett.89.195002
    [32]
    W. H. Ye, L. F. Wang, and X. T. He, “Spike deceleration and bubble acceleration in the ablative Rayleigh–Taylor instability,” Phys. Plasmas 17, 122704 (2010).10.1063/1.3497006
    [33]
    K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers,” Phys. Rev. E 67, 026319 (2003).10.1103/PhysRevE.67.026319
    [34]
    K. O. Mikaelian, “Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings,” Phys. Rev. E 89, 053009 (2014).10.1103/PhysRevE.89.053009
    [35]
    L. Spitzer and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).10.1103/physrev.89.977
    [36]
    J. Xin, R. Yan, Z.-H. Wan, D.-J. Sun, J. Zheng et al., “Two mode coupling of the ablative Rayleigh-Taylor instabilities,” Phys. Plasmas 26, 032703 (2019).10.1063/1.5070103
    [37]
    H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121, 185002 (2018).10.1103/physrevlett.121.185002
    [38]
    H. Zhang, R. Betti, R. Yan, and H. Aluie, “Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion,” Phys. Plasmas 27, 122701 (2020).10.1063/5.0023541
    [39]
    P. W. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8, 2315 (2001).10.1063/1.1350571
    [40]
    X. Bian, H. Aluie, D. Zhao, H. Zhang, and D. Livescu, “Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity,” Physica D 403, 132250 (2020).10.1016/j.physd.2019.132250
    [41]
    L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, “Destabilizing effect of density gradient on the Kelvin–Helmholtz instability,” Phys. Plasmas 16, 112104 (2009).10.1063/1.3255622
    [42]
    L. F. Wang, W. H. Ye, and Y. J. Li, “Numerical investigation on the ablative Kelvin-Helmholtz instability,” Europhys. Lett. 87, 54005 (2009).10.1209/0295-5075/87/54005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (96) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return