Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Tentori A., Colaïtis A., Batani D.. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903. doi: 10.1063/5.0103632
Citation: Tentori A., Colaïtis A., Batani D.. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903. doi: 10.1063/5.0103632

3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II

doi: 10.1063/5.0103632
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: alessandro.tentori@u-bordeaux.fr and alessandro.tentori@mail.polimi.it
  • Received Date: 2022-06-16
  • Accepted Date: 2022-10-12
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-01
  • We describe two numerical investigations performed using a 3D plasma Monte-Carlo code, developed to study hot-electron transport in the context of inertial confinement fusion. The code simulates the propagation of hot electrons in ionized targets, using appropriate scattering differential cross sections with free plasma electrons and ionized or partially ionized atoms. In this paper, we show that a target in the plasma state stops and diffuses electrons more effectively than a cold target (i.e., a target under standard conditions in which ionization is absent). This is related to the fact that in a plasma, the nuclear potential of plasma nuclei has a greater range than in the cold case, where the screening distance is determined by the electronic structure of atoms. However, in the ablation zone created by laser interaction, electrons undergo less severe scattering, counterbalancing the enhanced diffusion that occurs in the bulk. We also show that hard collisions, i.e., collisions with large polar scattering angle, play a primary role in electron beam diffusion and should not be neglected. An application of the plasma Monte-Carlo model to typical shock ignition implosions suggests that hot electrons will not give rise to any preheating concerns if their Maxwellian temperature is lower than 25–30 keV, although the presence of populations at higher temperatures must be suppressed. This result does not depend strongly on the initial angular divergence of the electron beam set in the simulations.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
    [2]
    N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Heating of laser plasmas for thermonuclear fusion,” Laser Interact. Relat. Plasma Phenom. 2, 398 (1972).10.1007/978-1-4684-7738-2_30
    [3]
    V. A. Shcherbakov, “Ignition of a laser fusion target by a focusing shock wave,” Sov. J. Plasma Phys 9, 240 (1983).
    [4]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [5]
    S. Atzeni, X. Ribeyre, G. Schurtz, A. J. Schmitt, B. Canaud, R. Betti, and L. J. Perkins, “Shock ignition of thermonuclear fuel: Principles and modelling,” Nucl. Fusion 54, 054008 (2014).10.1088/0029-5515/54/5/054008
    [6]
    B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397–3408 (1985).10.1063/1.865340
    [7]
    C. S. Liu and M. N. Rosenbluth, “Parametric decay of electromagnetic waves into two plasmons and its consequences,” Phys. Fluids 19, 967–971 (1976).10.1063/1.861591
    [8]
    W. L. Kruer, The Physics of Laser Plasma Interactions Reprint, ed. (Westview Press, Oxford, 2003).
    [9]
    S. Guskov, S. Borodziuk, A. Kasperczuk, T. Pisarczyk, M. Kalal, J. Limpouch, B. Kralikova, E. Krouský, K. Masek, M. Pfeifer, K. Rohlena, and J. Skala, “Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse,” Quantum Electron. 34, 989–1003 (2004).10.1070/QE2004V034N11ABEH002695
    [10]
    S. Gus’kov, X. Ribeyre, M. Touati, J.-L. Feugeas, P. Nicolaï, and V. Tikhonchuk, “Ablation pressure driven by an energetic electron beam in a dense plasma,” Phys. Rev. Lett. 109, 255004 (2012).10.1103/PhysRevLett.109.255004
    [11]
    S. Y. Guskov, N. Demchenko, A. Kasperczuk, T. Pisarczyk, Z. Kalinowska, T. Chodukowski, O. Renner, M. Smid, E. Krousky, M. Pfeifer et al., “Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2,” Laser Part. Beams 32, 177–195 (2014).10.1017/S0263034613000992
    [12]
    D. Batani, L. Antonelli, F. Barbato, G. Boutoux, A. Colaitis, J. Feugeas, G. Folpini, D. Mancelli, J. Santos, V. Tikhonchuk et al., “Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion,” Nucl. Fusion 59, 032012 (2018).10.1088/1741-4326/aaf0ed
    [13]
    J. Trela, W. Theobald, K. S. Anderson, D. Batani, R. Betti, A. Casner, J. A. Delettrez, J. A. Frenje, V. Y. Glebov, X. Ribeyre et al., “The control of hot-electron preheat in shock-ignition implosions,” Phys. Plasmas 25, 052707 (2018).10.1063/1.5020981
    [14]
    L. Antonelli, J. Trela, F. Barbato, G. Boutoux, P. Nicolaï, D. Batani, V. Tikhonchuk, D. Mancelli, A. Tentori, and S. Atzeni, “Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2,” Phys. Plasmas 26, 112708 (2019).10.1063/1.5119697
    [15]
    S. D. Baton, A. Colaïtis, C. Rousseaux, G. Boutoux, S. Brygoo, L. Jacquet, M. Koenig, D. Batani, A. Casner, E. L. Bel , “Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition,” High Energy Density Phys 36, 100796 (2020).10.1016/j.hedp.2020.100796
    [16]
    A. Tentori, A. Colaitis, W. Theobald, A. Casner, D. Raffestin, A. Ruocco, J. Trela, E. Le Bel, K. Anderson, M. Wei et al., “Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion,” Phys. Plasmas 28, 103302 (2021).10.1063/5.0059651
    [17]
    D. Tentori, A. Batani, and A. Colaïtis, “3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part I,” Matter Radiat. Extremes 7, 065902 (2022).10.1063/5.0103631
    [18]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/S0168-9002(03)01368-8
    [19]
    A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, P. Nicolaï, and V. Tikhonchuk, “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808
    [20]
    J. Breil, S. Galera, and P.-H. Maire, “Multi-material ALE computation in inertial confinement fusion code CHIC,” Comput. Fluids 46, 161 (2011), 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010).10.1016/j.compfluid.2010.06.017
    [21]
    C. Moller, “Zur theorie des durchgangs schneller elektronen durch materie,” Ann. Phys. 406, 531–585 (1932).10.1002/andp.19324060506
    [22]
    R. H. Dalitz and R. E. Peierls, “On higher born approximations in potential scattering,” Proc. R. Soc. London, Ser. A 206, 509–520 (1951).10.1098/rspa.1951.0085
    [23]
    S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2008).10.1088/0741-3335/51/1/015016
    [24]
    D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Universit y Press, 1995).
    [25]
    P. Andreo and A. Brahme, “Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures,” Radiat. Res. 100, 16–29 (1984).10.2307/3576517
    [26]
    L. Reimer, E. R. Krefting, K. Heinrich, and D. N. H. Yakowitz, “The effect of scattering models on the results of Monte Carlo calculations,” Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy (National Bureau of Standards, 1976), pp. 45–60.
    [27]
    J. M. Fernández-Varea, R. Mayol, J. Baró, and F. Salvat, “On the theory and simulation of multiple elastic scattering of electrons,” Nucl. Instrum. Methods Phys. Res., Sect. B 73, 447–473 (1993).10.1016/0168-583x(93)95827-r
    [28]
    Salvat, Nuclear Energy Agency, “PENELOPE 2018: A code system for Monte Carlo simulation of electronand photon transport,” https://doi.org/10.1787/9d2cc3d5-en (2019).
    [29]
    S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons,” Phys. Rev. 57, 24–29 (1940).10.1103/physrev.57.24
    [30]
    S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons. II,” Phys. Rev. 58, 36–42 (1940).10.1103/physrev.58.36
    [31]
    H. W. Lewis, “Multiple scattering in an infinite medium,” Phys. Rev. 78, 526–529 (1950).10.1103/physrev.78.526
    [32]
    A. A. Solodov and R. Betti, “Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets,” Phys. Plasmas 15, 042707 (2008).10.1063/1.2903890
    [33]
    J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, New York, 1975).
    [34]
    [35]
    G. Wentzel, “Zwei Bemerkungen über die Zerstreuung korpuskularer Strahlen als Beugungserscheinung,” Z. Phys. 40, 590–593 (1926).10.1007/bf01390457
    [36]
    [37]
    [38]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [39]
    L. C. Jarrott, M. S. Wei, C. McGuffey, F. N. Beg, P. M. Nilson, C. Sorce, C. Stoeckl, W. Theoboald, H. Sawada, R. B. Stephens, P. K. Patel, H. S. McLean, O. L. Landen, S. H. Glenzer, and T. Döppner, “Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays,” Rev. Sci. Instrum. 88, 043110 (2017).10.1063/1.4981793
    [40]
    [41]
    X. Llovet, C. J. Powell, F. Salvat, and A. Jablonski, “Cross sections for inner-shell ionization by electron impact,” J. Phys. Chem. Ref. Data 43, 013102 (2014).10.1063/1.4832851
    [42]
    A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux, L. Antonelli, P. Nicolaï, D. Batani, and V. Tikhonchuk, “Coupled hydrodynamic model for laser-plasma interaction and hot electron generation,” Phys. Rev. E 92, 041101 (2015).10.1103/PhysRevE.92.041101
    [43]
    C. D. Zhou and R. Betti, “Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions,” Phys. Plasmas 14, 072703 (2007).10.1063/1.2746812
    [44]
    P. Koester, F. Baffigi, G. Cristoforetti, L. Labate, L. A. Gizzi, S. Baton, M. Koenig, A. Colaïtis, D. Batani, A. Casner et al., “Bremsstrahlung cannon design for shock ignition relevant regime,” Rev. Sci. Instrum. 92, 013501 (2021).10.1063/5.0022030
    [45]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (165) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return