Citation: | Tentori A., Colaïtis A., Batani D.. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903. doi: 10.1063/5.0103632 |
[1] |
J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
|
[2] |
N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Heating of laser plasmas for thermonuclear fusion,” Laser Interact. Relat. Plasma Phenom. 2, 398 (1972).10.1007/978-1-4684-7738-2_30
|
[3] |
V. A. Shcherbakov, “Ignition of a laser fusion target by a focusing shock wave,” Sov. J. Plasma Phys 9, 240 (1983).
|
[4] |
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
|
[5] |
S. Atzeni, X. Ribeyre, G. Schurtz, A. J. Schmitt, B. Canaud, R. Betti, and L. J. Perkins, “Shock ignition of thermonuclear fuel: Principles and modelling,” Nucl. Fusion 54, 054008 (2014).10.1088/0029-5515/54/5/054008
|
[6] |
B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397–3408 (1985).10.1063/1.865340
|
[7] |
C. S. Liu and M. N. Rosenbluth, “Parametric decay of electromagnetic waves into two plasmons and its consequences,” Phys. Fluids 19, 967–971 (1976).10.1063/1.861591
|
[8] |
W. L. Kruer, The Physics of Laser Plasma Interactions Reprint, ed. (Westview Press, Oxford, 2003).
|
[9] |
S. Guskov, S. Borodziuk, A. Kasperczuk, T. Pisarczyk, M. Kalal, J. Limpouch, B. Kralikova, E. Krouský, K. Masek, M. Pfeifer, K. Rohlena, and J. Skala, “Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse,” Quantum Electron. 34, 989–1003 (2004).10.1070/QE2004V034N11ABEH002695
|
[10] |
S. Gus’kov, X. Ribeyre, M. Touati, J.-L. Feugeas, P. Nicolaï, and V. Tikhonchuk, “Ablation pressure driven by an energetic electron beam in a dense plasma,” Phys. Rev. Lett. 109, 255004 (2012).10.1103/PhysRevLett.109.255004
|
[11] |
S. Y. Guskov, N. Demchenko, A. Kasperczuk, T. Pisarczyk, Z. Kalinowska, T. Chodukowski, O. Renner, M. Smid, E. Krousky, M. Pfeifer et al., “Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2,” Laser Part. Beams 32, 177–195 (2014).10.1017/S0263034613000992
|
[12] |
D. Batani, L. Antonelli, F. Barbato, G. Boutoux, A. Colaitis, J. Feugeas, G. Folpini, D. Mancelli, J. Santos, V. Tikhonchuk et al., “Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion,” Nucl. Fusion 59, 032012 (2018).10.1088/1741-4326/aaf0ed
|
[13] |
J. Trela, W. Theobald, K. S. Anderson, D. Batani, R. Betti, A. Casner, J. A. Delettrez, J. A. Frenje, V. Y. Glebov, X. Ribeyre et al., “The control of hot-electron preheat in shock-ignition implosions,” Phys. Plasmas 25, 052707 (2018).10.1063/1.5020981
|
[14] |
L. Antonelli, J. Trela, F. Barbato, G. Boutoux, P. Nicolaï, D. Batani, V. Tikhonchuk, D. Mancelli, A. Tentori, and S. Atzeni, “Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2,” Phys. Plasmas 26, 112708 (2019).10.1063/1.5119697
|
[15] |
S. D. Baton, A. Colaïtis, C. Rousseaux, G. Boutoux, S. Brygoo, L. Jacquet, M. Koenig, D. Batani, A. Casner, E. L. Bel , “Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition,” High Energy Density Phys 36, 100796 (2020).10.1016/j.hedp.2020.100796
|
[16] |
A. Tentori, A. Colaitis, W. Theobald, A. Casner, D. Raffestin, A. Ruocco, J. Trela, E. Le Bel, K. Anderson, M. Wei et al., “Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion,” Phys. Plasmas 28, 103302 (2021).10.1063/5.0059651
|
[17] |
D. Tentori, A. Batani, and A. Colaïtis, “3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part I,” Matter Radiat. Extremes 7, 065902 (2022).10.1063/5.0103631
|
[18] |
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/S0168-9002(03)01368-8
|
[19] |
A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, P. Nicolaï, and V. Tikhonchuk, “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808
|
[20] |
J. Breil, S. Galera, and P.-H. Maire, “Multi-material ALE computation in inertial confinement fusion code CHIC,” Comput. Fluids 46, 161 (2011), 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010).10.1016/j.compfluid.2010.06.017
|
[21] |
C. Moller, “Zur theorie des durchgangs schneller elektronen durch materie,” Ann. Phys. 406, 531–585 (1932).10.1002/andp.19324060506
|
[22] |
R. H. Dalitz and R. E. Peierls, “On higher born approximations in potential scattering,” Proc. R. Soc. London, Ser. A 206, 509–520 (1951).10.1098/rspa.1951.0085
|
[23] |
S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2008).10.1088/0741-3335/51/1/015016
|
[24] |
D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Universit y Press, 1995).
|
[25] |
P. Andreo and A. Brahme, “Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures,” Radiat. Res. 100, 16–29 (1984).10.2307/3576517
|
[26] |
L. Reimer, E. R. Krefting, K. Heinrich, and D. N. H. Yakowitz, “The effect of scattering models on the results of Monte Carlo calculations,” Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy (National Bureau of Standards, 1976), pp. 45–60.
|
[27] |
J. M. Fernández-Varea, R. Mayol, J. Baró, and F. Salvat, “On the theory and simulation of multiple elastic scattering of electrons,” Nucl. Instrum. Methods Phys. Res., Sect. B 73, 447–473 (1993).10.1016/0168-583x(93)95827-r
|
[28] |
Salvat, Nuclear Energy Agency, “PENELOPE 2018: A code system for Monte Carlo simulation of electronand photon transport,” https://doi.org/10.1787/9d2cc3d5-en (2019).
|
[29] |
S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons,” Phys. Rev. 57, 24–29 (1940).10.1103/physrev.57.24
|
[30] |
S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons. II,” Phys. Rev. 58, 36–42 (1940).10.1103/physrev.58.36
|
[31] |
H. W. Lewis, “Multiple scattering in an infinite medium,” Phys. Rev. 78, 526–529 (1950).10.1103/physrev.78.526
|
[32] |
A. A. Solodov and R. Betti, “Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets,” Phys. Plasmas 15, 042707 (2008).10.1063/1.2903890
|
[33] |
J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, New York, 1975).
|
[34] | |
[35] |
G. Wentzel, “Zwei Bemerkungen über die Zerstreuung korpuskularer Strahlen als Beugungserscheinung,” Z. Phys. 40, 590–593 (1926).10.1007/bf01390457
|
[36] | |
[37] | |
[38] |
O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
|
[39] |
L. C. Jarrott, M. S. Wei, C. McGuffey, F. N. Beg, P. M. Nilson, C. Sorce, C. Stoeckl, W. Theoboald, H. Sawada, R. B. Stephens, P. K. Patel, H. S. McLean, O. L. Landen, S. H. Glenzer, and T. Döppner, “Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays,” Rev. Sci. Instrum. 88, 043110 (2017).10.1063/1.4981793
|
[40] | |
[41] |
X. Llovet, C. J. Powell, F. Salvat, and A. Jablonski, “Cross sections for inner-shell ionization by electron impact,” J. Phys. Chem. Ref. Data 43, 013102 (2014).10.1063/1.4832851
|
[42] |
A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux, L. Antonelli, P. Nicolaï, D. Batani, and V. Tikhonchuk, “Coupled hydrodynamic model for laser-plasma interaction and hot electron generation,” Phys. Rev. E 92, 041101 (2015).10.1103/PhysRevE.92.041101
|
[43] |
C. D. Zhou and R. Betti, “Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions,” Phys. Plasmas 14, 072703 (2007).10.1063/1.2746812
|
[44] |
P. Koester, F. Baffigi, G. Cristoforetti, L. Labate, L. A. Gizzi, S. Baton, M. Koenig, A. Colaïtis, D. Batani, A. Casner et al., “Bremsstrahlung cannon design for shock ignition relevant regime,” Rev. Sci. Instrum. 92, 013501 (2021).10.1063/5.0022030
|
[45] |