Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Tentori A., Colaïtis A., Batani D.. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I[J]. Matter and Radiation at Extremes, 2022, 7(6): 065902. doi: 10.1063/5.0103631
Citation: Tentori A., Colaïtis A., Batani D.. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I[J]. Matter and Radiation at Extremes, 2022, 7(6): 065902. doi: 10.1063/5.0103631

3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I

doi: 10.1063/5.0103631
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: alessandro.tentori@u-bordeaux.fr and alessandro.tentori@mail.polimi.it
  • Received Date: 2022-06-16
  • Accepted Date: 2022-10-12
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-01
  • We describe the development of a 3D Monte-Carlo model to study hot-electron transport in ionized or partially ionized targets, considering regimes typical of inertial confinement fusion. Electron collisions are modeled using a mixed simulation algorithm that considers both soft and hard scattering phenomena. Soft collisions are modeled according to multiple-scattering theories, i.e., considering the global effects of the scattering centers on the primary particle. Hard collisions are simulated by considering a two-body interaction between an electron and a plasma particle. Appropriate differential cross sections are adopted to correctly model scattering in ionized or partially ionized targets. In particular, an analytical form of the differential cross section that describes a collision between an electron and the nucleus of a partially ionized atom in a plasma is proposed. The loss of energy is treated according to the continuous slowing down approximation in a plasma stopping power theory. Validation against Geant4 is presented. The code will be implemented as a module in 3D hydrodynamic codes, providing a basis for the development of robust shock ignition schemes and allowing more precise interpretations of current experiments in planar or spherical geometries.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
    [2]
    N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Heating of laser plasmas for thermonuclear fusion,” in Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwarz, and H. D. Hora, (Plenum, New York, 1972). Vol. 2, p. 389.22.
    [3]
    V. A. Shcherbakov, “Ignition of a laser fusion target by a focusing shock wave,” Sov. J. Plasma Phys. 9, 240 (1983).
    [4]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [5]
    S. Atzeni, X. Ribeyre, G. Schurtz, A. J. Schmitt, B. Canaud, R. Betti, and L. J. Perkins, “Shock ignition of thermonuclear fuel: Principles and modelling,” Nucl. Fusion 54, 054008 (2014).10.1088/0029-5515/54/5/054008
    [6]
    V. N. Goncharov, J. P. Knauer, P. W. McKenty, P. B. Radha, T. C. Sangster, S. Skupsky, R. Betti, R. L. McCrory, and D. D. Meyerhofer, “Improved performance of direct drive inertial confinement fusion target designs with adiabat shaping using an intensity picket,” Phys. Plasmas 10, 1906–1918 (2003).10.1063/1.1562166
    [7]
    W. L. Kruer, The Physics of Laser Plasma Interactions, reprint edition (Westview Press, Oxford, 2003).
    [8]
    B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397–3408 (1985).10.1063/1.865340
    [9]
    C. S. Liu and M. N. Rosenbluth, “Parametric decay of electromagnetic waves into two plasmons and its consequences,” Phys. Fluids 19, 967–971 (1976).10.1063/1.861591
    [10]
    A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, P. Nicolaï, and V. Tikhonchuk, “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808
    [11]
    S. Y. Guskov, P. A. Kuchugov, R. A. Yakhin, and N. V. Zmitrenko, “Effect of fast electrons on the gain of a direct-drive laser fusion target,” Plasma Phys. Controlled Fusion 61, 105014 (2019).10.1088/1361-6587/ab400e
    [12]
    S. Guskov, P. Kuchugov, R. Yakhin, and N. Zmitrenko, “The role of fast electron energy transfer in the problem of shock ignition of laser thermonuclear target,” High Energy Density Phys. 36, 100835 (2020).10.1016/j.hedp.2020.100835
    [13]
    V. A. Smalyuk, D. Shvarts, R. Betti, J. A. Delettrez, D. H. Edgell, V. Y. Glebov, V. N. Goncharov, R. L. McCrory, D. D. Meyerhofer, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, S. Skupsky, C. Stoeckl, B. Yaakobi, J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin, “Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators,” Phys. Rev. Lett. 100, 185005 (2008).10.1103/physrevlett.100.185005
    [14]
    J. Trela, W. Theobald, K. S. Anderson, D. Batani, R. Betti, A. Casner, J. A. Delettrez, J. A. Frenje, V. Y. Glebov, X. Ribeyre, A. A. Solodov, M. Stoeckl, and C. Stoeckl, “The control of hot-electron preheat in shock-ignition implosions,” Phys. Plasmas 25, 052707 (2018).10.1063/1.5020981
    [15]
    P. Andreo and A. Brahme, “Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures,” Radiat. Res. 100, 16–29 (1984).10.2307/3576517
    [16]
    L. Reimer, E. R. Krefting, K. Heinrich, and D. N. H. Yakowitz, “The effect of scattering models on the results of Monte Carlo calculations,” in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy (National Bureau of Standards, 1976), pp. 45–60.
    [17]
    J. M. Fernández-Varea, R. Mayol, J. Baró, and F. Salvat, “On the theory and simulation of multiple elastic scattering of electrons,” Nucl. Instrum. Methods Phys. Res., Sect. B 73, 447–473 (1993).10.1016/0168-583x(93)95827-r
    [18]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/S0168-9002(03)01368-8
    [19]
    C. Negreanu, X. Llovet, R. Chawla, and F. Salvat, “Calculation of multiple-scattering angular distributions of electrons and positrons,” Radiat. Phys. Chem. 74, 264–281 (2005).10.1016/j.radphyschem.2005.07.006
    [20]
    F. Salvat, PENELOPE: A Code System for Monte Carlo Simulation of Electron and Photon Transport (Nuclear Energy Agency, 2019).
    [21]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [22]
    D. Batani, L. Antonelli, F. Barbato, G. Boutoux, A. Colaitis, J. Feugeas, G. Folpini, D. Mancelli, J. Santos, V. Tikhonchuk et al., “Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion,” Nucl. Fusion 59, 032012 (2018).10.1088/1741-4326/aaf0ed
    [23]
    L. Antonelli, J. Trela, F. Barbato, G. Boutoux, P. Nicolaï, D. Batani, V. Tikhonchuk, D. Mancelli, A. Tentori, and S. Atzeni, “Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2,” Phys. Plasmas 26, 112708 (2019).10.1063/1.5119697
    [24]
    A. Tentori, A. Colaitis, W. Theobald, A. Casner, D. Raffestin, A. Ruocco, J. Trela, E. Le Bel, K. Anderson, M. Wei et al., “Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion,” Phys. Plasmas 28, 103302 (2021).10.1063/5.0059651
    [25]
    A. Tentori, D. Batani, and A. Colaïtis, “3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part II,” Matter Radiat. Extremes 7, 065903 (2022).10.1063/5.0103632
    [26]
    M. J. Berger, “Monte Carlo calculation of the penetration and diffusion of fast charged particles,” in Methods in Computational Physics, Volume 1 (Academic Press, New York, London, 1963), pp. 135–215.
    [27]
    C. Moller, “Zur theorie des durchgangs schneller elektronen durch materie,” Ann. Phys. 406, 531–585 (1932).10.1002/andp.19324060506
    [28]
    L. D. Landau, V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory (Pergamon Press, 1971), Vol. 4.
    [29]
    S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2008).10.1088/0741-3335/51/1/015016
    [30]
    G. Wentzel, “Zwei bemerkungen über die zerstreuung korpuskularer strahlen als beugungserscheinung,” Z. Phys. 40, 590–593 (1926).10.1007/bf01390457
    [31]
    [32]
    J. C. Stewart and M. Rotenberg, “Wave functions and transition probabilities in scaled Thomas-Fermi ion potentials,” Phys. Rev. 140, A1508–A1519 (1965).10.1103/physrev.140.a1508
    [33]
    A. S. Davydov, Quantum Mechanics (Pergamon Press, 1965).
    [34]
    [35]
    [36]
    [37]
    E. Nardi and Z. Zinamon, “Energy deposition by relativistic electrons in high-temperature targets,” Phys. Rev. A 18, 1246–1249 (1978).10.1103/physreva.18.1246
    [38]
    S. G. Brush, H. L. Sahlin, and E. Teller, “Monte Carlo study of a one-component plasma. I,” J. Chem. Phys. 45, 2102–2118 (1966).10.1063/1.1727895
    [39]
    Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273–1286 (1984).10.1063/1.864744
    [40]
    [41]
    D. Salzmann, Atomic Physics in Hot Plasmas (Oxford University Press, 1998).
    [42]
    R. P. Drake, High-Energy-Density Physics, 2nd ed. (Springer, 2018).
    [43]
    J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, New York, 1975).
    [44]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell et al., “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/PhysRevLett.120.055001
    [45]
    A. A. Solodov, M. J. Rosenberg, W. Seka, J. F. Myatt, M. Hohenberger, R. Epstein, C. Stoeckl, R. W. Short, S. P. Regan, P. Michel et al., “Hot-electron generation at direct-drive ignition-relevant plasma conditions at the National Ignition Facility,” Phys. Plasmas 27, 052706 (2020).10.1063/1.5134044
    [46]
    S. D. Baton, A. Colaïtis, C. Rousseaux, G. Boutoux, S. Brygoo, L. Jacquet, M. Koenig, D. Batani, A. Casner, E. L. Bel et al., “Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition,” High Energy Density Phys. 36, 100796 (2020).10.1016/j.hedp.2020.100796
    [47]
    P. Koester, F. Baffigi, G. Cristoforetti, L. Labate, L. A. Gizzi, S. Baton, M. Koenig, A. Colaïtis, D. Batani, A. Casner et al., “Bremsstrahlung cannon design for shock ignition relevant regime,” Rev. Sci. Instrum. 92, 013501 (2021).10.1063/5.0022030
    [48]
    R. H. Dalitz and R. E. Peierls, “On higher born approximations in potential scattering,” Proc. R. Soc. London, Ser. A 206, 509–520 (1951).10.1098/rspa.1951.0085
    [49]
    B. P. Nigam, M. K. Sundaresan, and T.-Y. Wu, “Theory of multiple scattering: Second born approximation and corrections to Molière’s work,” Phys. Rev. 115, 491–502 (1959).10.1103/physrev.115.491
    [50]
    J. W. Motz, H. Olsen, and H. W. Koch, “Electron scattering without atomic or nuclear excitation,” Rev. Mod. Phys. 36, 881–928 (1964).10.1103/revmodphys.36.881
    [51]
    S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons,” Phys. Rev. 57, 24–29 (1940).10.1103/physrev.57.24
    [52]
    S. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons. II,” Phys. Rev. 58, 36–42 (1940).10.1103/physrev.58.36
    [53]
    H. W. Lewis, “Multiple scattering in an infinite medium,” Phys. Rev. 78, 526–529 (1950).10.1103/physrev.78.526
    [54]
    A. A. Solodov and R. Betti, “Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets,” Phys. Plasmas 15, 042707 (2008).10.1063/1.2903890
    [55]
    Y. A. Valchuk and N. B. Volkov, “Energy losses of fast electrons in a beam plasma,” Fiz. Plazmy 21, 167–172 (1995).
    [56]
    C. Deutsch, H. Furukawa, K. Mima, M. Murakami, and K. Nishihara, “Interaction physics of the fast ignitor concept,” Phys. Rev. 77, 2483 (1996).10.1103/PhysRevLett.77.2483
    [57]
    A. Okabayashi, H. Habara, T. Yabuuchi, T. Iwawaki, and K. A. Tanaka, “Stopping and transport of fast electrons in superdense matter,” Phys. Plasmas 20, 083301 (2013).10.1063/1.4816812
    [58]
    L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, 1981), Vol. 10.
    [59]
    A. P. L. Robinson, D. J. Strozzi, J. R. Davies, L. Gremillet, J. J. Honrubia, T. Johzaki, R. J. Kingham, M. Sherlock, and A. A. Solodov, “Theory of fast electron transport for fast ignition,” Nucl. Fusion 54, 054003 (2014).10.1088/0029-5515/54/5/054003
    [60]
    E. J. McGuire, “Born-approximation electron ionization cross sections for Aln+ (0 ≤ n ≤ 11) and some ions of the Na isoelectronic sequence,” Phys. Rev. A 26, 125–131 (1982).10.1103/physreva.26.125
    [61]
    [62]
    [63]
    [64]
    M. S. Livingston and H. A. Bethe, “Nuclear physics C. Nuclear dynamics, experimental,” Rev. Mod. Phys. 9, 245–390 (1937).10.1103/revmodphys.9.245
    [65]
    D. Pines and D. Bohm, “A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev. 85, 338–353 (1952).10.1103/physrev.85.338
    [66]
    G. F. Knoll, Radiation Detection and Measurement, 2nd ed. (Wiley, New York, 1989).
    [67]
    J. Baró, J. Sempau, J. M. Fernández-Varea, and F. Salvat, “Simplified Monte Carlo simulation of elastic electron scattering in limited media,” Nucl. Instrum. Methods Phys. Res., Sect. B 84, 465–483 (1994).10.1016/0168-583x(94)95341-4
    [68]
    M. Asai, M. A. Cortés-Giraldo, V. Giménez-Alventosa, V. Giménez Gómez, and F. Salvat, “The PENELOPE physics models and transport mechanics. Implementation into Geant4,” Front. Phys. 9, 738735 (2021).10.3389/fphy.2021.738735
    [69]
    A. Colaïtis, J. P. Palastro, R. K. Follett, I. V. Igumenschev, and V. Goncharov, “Real and complex valued geometrical optics inverse ray-tracing for inline field calculations,” Phys. Plasmas 26, 032301 (2019).10.1063/1.5082951
    [70]
    J. J. Honrubia and J. Meyer-ter-Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules,” Nucl. Fusion 46, L25–L28 (2006).10.1088/0029-5515/46/11/l02
    [71]
    J. J. Honrubia and J. Meyer-ter-Vehn, “Ignition of pre-compressed fusion targets by fast electrons,” J. Phys.: Conf. Ser. 112, 022055 (2008).10.1088/1742-6596/112/2/022055
    [72]
    X. Ribeyre, S. Gus’kov, J.-L. Feugeas, P. Nicolaï, and V. T. Tikhonchuk, “Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons,” Phys. Plasmas 20, 062705 (2013).10.1063/1.4811473
    [73]
    J. Breil, S. Galera, and P.-H. Maire, “Multi-material ALE computation in inertial confinement fusion code CHIC,” Comput. Fluids 46, 161 (2011), part of the Special Issue: 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010).10.1016/j.compfluid.2010.06.017
    [74]
    O. N. Vassiliev, Monte Carlo Methods for Radiation Transport (Springer, 2017).
    [75]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (29) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return