Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(5): 055701. doi: 10.1063/5.0103362
Citation: Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(5): 055701. doi: 10.1063/5.0103362

Dream fusion in octahedral spherical hohlraum

doi: 10.1063/5.0103362
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: lan_ke@iapcm.ac.cn
  • Received Date: 2022-06-15
  • Accepted Date: 2022-08-11
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • The octahedral spherical hohlraum provides an ideal and practical approach for indirect-drive toward a dream fusion with predictable and reproducible gain and opens a route to the development of a laser drive system for multiple laser fusion schemes. This paper addresses a number of issues that have arisen with regard to octahedral spherical hohlraums, such as how to naturally generate a highly symmetric radiation drive at all times and for all spectra without the use of symmetry tuning technology, how to determine the three-dimensional, temporal, and spectral characteristics of the real radiation drive on a capsule in experiments, and the relative energy efficiency of an octahedral spherical hohlraum compared with a cylindrical hohlraum. A design island for an octahedral spherical hohlraum is presented. Finally, the challenges and future tasks for the path forward are presented.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139 (1972).10.1038/239139a0
    [2]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [3]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science, Oxford, 2004).
    [4]
    E. M. Campbell and W. J. Hogan, “The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41, B39 (1999).10.1088/0741-3335/41/12b/303
    [5]
    J. D. Lindl and E. I. Moses, “Special Topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experiments,” Phys. Plasmas 18, 050901 (2011).10.1063/1.3591001
    [6]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol, A. Pak, E. L. Dewald, S. Bhandarkar, L. R. Bennedetti, T. Bunn, J. Biener, J. Crippen et al., “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett. 120, 245003 (2018).10.1103/physrevlett.120.245003
    [7]
    D. Clery, “Laser-powered fusion effort nears, ‘ignition,’” Science 373, 841 (2021).10.1126/science.373.6557.841
    [8]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/PhysRevLett.129.075001
    [9]
    A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, J. E. Ralph, D. T. Casey et al., “Experimental achievement and signatures of ignition at the National Ignition Facility,” Phys. Rev. E 106, 025202 (2022).10.1103/PhysRevE.106.025202
    [10]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. R. Weber, D. S. Clark et al., “Design of an inertial fusion experiment exceeding the Lawson criterion for ignition,” Phys. Rev. E 106, 025201 (2022).10.1103/PhysRevE.106.025201
    [11]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan et al., “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/PhysRevLett.102.025004
    [12]
    R. P. J. Town, D. K. Bradley, A. Kritcher, O. S. Jones, J. R. Rygg, R. Tommasini et al., “Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility,” Phys. Plasmas 21, 056313 (2014).10.1063/1.4876609
    [13]
    A. L. Kritcher, R. Town, D. Bradley, D. Clark, B. Spears, O. Jones et al., “Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility,” Phys. Plasmas 21, 042708 (2014).10.1063/1.4871718
    [14]
    L. Divol, A. Pak, L. F. Berzak Hopkins, S. L. Pape, N. B. Meezan, E. L. Dewald et al., “Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity,” Phys. Plasmas 24, 056309 (2017).10.1063/1.4982215
    [15]
    D. A. Callahan, O. A. Hurricane, J. E. Ralph, C. A. Thomas, K. L. Baker, L. R. Benedetti et al., “Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility laser,” Phys. Plasmas 25, 056305 (2018).10.1063/1.5020057
    [16]
    A. L. Kritcher, D. E. Hinkel, D. A. Callahan, O. A. Hurricane, D. Clark, D. T. Casey et al., “Integrated modeling of cryogenic layered highfoot experiments at the NIF,” Phys. Plasmas 23, 052709 (2016).10.1063/1.4949351
    [17]
    O. S. Jones, C. J. Cerjan, M. M. Marinak, J. L. Milovich, H. F. Robey, P. T. Springer et al., “A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments,” Phys. Plasmas 19, 056315 (2012).10.1063/1.4802194
    [18]
    J. L. Kline, D. A. Callahan, S. H. Glenzer, N. B. Meezan, J. D. Moody, D. E. Hinkel et al., “Hohlraum energetics scaling to 520 TW on the National Ignition Facility,” Phys. Plasmas 20, 056314 (2013).10.1063/1.4803907
    [19]
    A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey et al., “Burning plasma achieved in inertial fusion,” Nature 601, 542 (2022).10.1038/s41586-021-04281-w
    [20]
    S. A. MacLaren, L. P. Masse, C. E. Czajka, S. F. Khan, G. A. Kyrala, T. Ma et al., “A near one-dimensional indirectly driven implosion at convergence ratio 30,” Phys. Plasmas 25, 056311 (2018).10.1063/1.5017976
    [21]
    G. Ren, J. Liu, W. Huo, and K. Lan, “Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model,” Matter Radiat. Extremes 2, 22 (2017).10.1016/j.mre.2016.11.002
    [22]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [23]
    [24]
    [25]
    J.-L. Miquel and E. Prene, “LMJ & PETAL status and program overview,” Nucl. Fusion 59, 032005 (2019).10.1088/1741-4326/aac343
    [26]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan et al., “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2, 243 (2017).10.1016/j.mre.2017.07.004
    [27]
    [28]
    K. Lan, J. Liu, D. Lai, W. Zheng, and X.-T. He, “High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum to-capsule radius ratio,” Phys. Plasmas 21, 010704 (2014).10.1063/1.4863435
    [29]
    K. Lan, X.-T. He, J. Liu, W. Zheng, and D. Lai, “Octahedral spherical hohlraum and its laser arrangement for inertial fusion,” Phys. Plasmas 21, 052704 (2014).10.1063/1.4878835
    [30]
    K. Lan and W. Zheng, “Novel spherical hohlraum with cylindrical laser entrance holes and shields,” Phys. Plasmas 21, 090704 (2014).10.1063/1.4895503
    [31]
    S. Li, K. Lan, and J. Liu, “Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums,” Laser Part. Beams 33, 731 (2015).10.1017/s0263034615000890
    [32]
    W. Huo, Z. Li, D. Yang, K. Lan, J. Liu, G. Ren et al., “First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole,” Matter Radiat. Extremes 1, 2 (2016).10.1016/j.mre.2016.02.001
    [33]
    Z. Li, D. Yang, S. Li, W. Y. Huo, K. Lan, J. Liu, G. Ren et al., “Comparison of the laser spot movement inside cylindrical and spherical hohlraums,” Phys. Plasmas 24, 072711 (2017).10.1063/1.4993184
    [34]
    W. Y. Huo, Z. Li, Y. H. Chen, X. Xie, K. Lan, J. Liu et al., “First investigation on the radiation field of the spherical hohlraum,” Phys. Rev. Lett. 117, 025002 (2016).10.1103/PhysRevLett.117.025002
    [35]
    X. Xie, Z. Li, S. Li, Y. Huang, L. Jing, D. Yang et al., “Radiation flux study of spherical hohlraums at the SGIII prototype facility,” Phys. Plasmas 23, 112701 (2016).10.1063/1.4967271
    [36]
    W. Y. Huo, Z. Li, Y.-H. Chen, X. Xie, G. Ren, H. Cao et al., “First octahedral spherical hohlraum energetics experiment at the SGIII laser facility,” Phys. Rev. Lett. 120, 165001 (2018).10.1103/physrevlett.120.165001
    [37]
    K. Lan, Z. Li, X. Xie, Y. H. Chen, C. Zheng, C. Zhai et al., “Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target,” Phys. Rev. E 95, 031202 (2017).10.1103/PhysRevE.95.031202
    [38]
    Y. Chen, Z. Li, X. Xie, C. Zheng, C. Zhai, L. Hao et al., “First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility,” Matter Radiat. Extremes 2, 77 (2017).10.1016/j.mre.2017.01.001
    [39]
    K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao et al., “First inertial confinement fusion implosion experiment in octahedral spherical hohlraum,” Phys. Rev. Lett. 127, 245001 (2021).10.1103/physrevlett.127.245001
    [40]
    S. Jiang, L. Jing, Y. Huang, and Y. Ding, “Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion,” Phys. Plasmas 21, 102710 (2014).10.1063/1.4899038
    [41]
    H. Duan, C. Wu, W. Pei, and S. Zou, “Theoretical study of symmetry of flux onto a capsule,” Phys. Plasmas 22, 092704 (2015).10.1063/1.4930206
    [42]
    L. Ren, D. Zhao, and J. Zhu, “Beam guiding system geometric arrangement in the target area of high-power laser drivers,” High Power Laser Sci. Eng. 3, e12 (2015).10.1017/hpl.2015.6
    [43]
    S. Jiang, Y. Huang, L. Jing, H. Li, T. Huang, and Y. Ding, “A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes,” Phys. Plasmas 23, 012702 (2016).10.1063/1.4939474
    [44]
    H. Duan, C. Wu, W. Pei, and S. Zou, “Instability analysis of pointing accuracy and power imbalance of spherical hohlraum,” Phys. Plasmas 23, 052703 (2016).10.1063/1.4948423
    [45]
    S. Jiang, L. Jing, Y. Huang, H. Li, T. Huang, and Y. Ding, “A spherical hohlraum design with tetrahedral 4 laser entrance holes and high radiation performance,” Phys. Plasmas 23, 122703 (2016).10.1063/1.4971809
    [46]
    L. Kuang, H. Li, L. Jing, Z. Lin, L. Zhang, L. Li, Y. Ding, S. Jiang, J. Liu, and J. Zheng, “A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition,” Sci. Rep. 6, 34636 (2016).10.1038/srep34636
    [47]
    X. Li, C.-S. Wu, Z.-S. Dai, W.-D. Zheng, J.-F. Gu, P.-J. Gu, S.-Y. Zou, J. Liu, and S.-P. Zhu, “A new ignition hohlraum design for indirect-drive inertial confinement fusion,” Chin. Phys. B 25, 085202 (2016).10.1088/1674-1056/25/8/085202
    [48]
    L. Jing, S. Jiang, L. Kuang, L. Zhang, L. Li, Z. Lin et al., “Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion,” Nucl. Fusion 57, 046020 (2017).10.1088/1741-4326/aa5b43
    [49]
    P. E. Masson-Laborde, M. C. Monteil, V. Tassin, F. Philippe, P. Gauthier, A. Casner et al., “Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums,” Phys. Plasmas 23, 022703 (2016).10.1063/1.4941706
    [50]
    W. A. Farmer, M. Tabak, J. H. Hammer, P. A. Amendt, and D. E. Hinkel, “High-temperature hohlraum designs with multiple laser-entrance holes,” Phys. Plasmas 26, 032701 (2019).10.1063/1.5087140
    [51]
    [52]
    [53]
    W. Y. Wang and R. S. Craxton, “Pentagonal prism spherical hohlraums for OMEGA,” Phys. Plasmas 28, 062703 (2021).10.1063/5.0050214
    [54]
    [55]
    X. Li, Y. Dong, D. Kang, W. Jiang, H. Shen, L. Kuang et al., “First indirect drive experiment using a six-cylinder-port hohlraum,” Phys. Rev. Lett. 128, 195001 (2022).10.1103/physrevlett.128.195001
    [56]
    K. Lan, J. Liu, Z. Li, X. Xie, W. Huo, Y. Chen et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003
    [57]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [58]
    W. Y. Huo, J. Liu, Y. Zhao, W. Zheng, and K. Lan, “Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy,” Phys. Plasmas 21, 114503 (2014).10.1063/1.4901812
    [59]
    J. D. Moody, D. A. Callahan, D. E. Hinkel, P. A. Amendt, K. L. Baker, D. Bradley et al., “Progress in hohlraum physics for the National Ignition Facility,” Phys. Plasmas 21, 056317 (2014).10.1063/1.4876966
    [60]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka, D. H. Froula et al., “Multiple-beam laser–plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623
    [61]
    D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, C. A. Thomas, J. E. Ralph, J. D. Moody, and M. B. Schneider, “Interplay of laser-plasma interactions and inertial fusion hydrodynamics,” Phys. Rev. Lett. 118, 025002 (2017).10.1103/PhysRevLett.118.025002
    [62]
    E. M. Campbell, V. N. Goncharov, T. C. Sangster, S. P. Regan, P. B. Radha, R. Betti et al., “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37 (2017).10.1016/j.mre.2017.03.001
    [63]
    X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu, K. Lan, J. F. Wu, and W. H. Ye, “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
    [64]
    G. Ren, J. Yan, J. Liu, K. Lan, Y. H. Chen, W. Y. Huo et al., “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001
    [65]
    M. Liu, X. Ai, Y. Liu, Q. Chen, S. Zhang, Z. He, Y. Huang, and Q. Yin, “Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion,” Matter Radiat. Extremes 6, 025901 (2021).10.1063/5.0033103
    [66]
    M. H. Emery, J. H. Orens, J. H. Gardner, and J. P. Boris, “Influence of nonuniform laser intensities on ablatively accelerated targets,” Phys. Rev. Lett. 48, 253 (1982).10.1103/physrevlett.48.253
    [67]
    S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662 (1983).10.1063/1.332599
    [68]
    S. Kawata and K. Niu, “Effect of nonuniform implosion of target on fusion parameters,” J. Phys. Soc. Jpn. 53, 3416 (1984).10.1143/jpsj.53.3416
    [69]
    V. N. Goncharov, S. Skupsky, T. R. Boehly, J. P. Knauer, P. McKenty, V. A. Smalyuk, R. P. J. Town, O. V. Gotchev, R. Betti, and D. D. Meyerhofer, “A model of laser imprinting,” Phys. Plasmas 7, 2062 (2000).10.1063/1.874028
    [70]
    R. L. Kauffman, L. J. Suter, C. B. Darrow, J. D. Kilkenny, H. N. Kornblum, D. S. Montgomery et al., “High temperatures in inertial confinement fusion radiation cavities heated with 0.35 μm light,” Phys. Rev. Lett. 73, 2320 (1994).10.1103/physrevlett.73.2320
    [71]
    D. S. Clark, C. R. Weber, J. L. Milovich, A. E. Pak, D. T. Casey, B. A. Hammel et al., “Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions,” Phys. Plasmas 26, 050601 (2019).10.1063/1.5091449
    [72]
    S. A. MacLaren, M. B. Schneider, K. Widmann, J. H. Hammer, B. E. Yoxall, J. D. Moody et al., “Novel characterization of capsule X-ray drive at the National Ignition Facility,” Phys. Rev. Lett. 112, 105003 (2014).10.1103/physrevlett.112.105003
    [73]
    W. Y. Huo, K. Lan, Y. Li, D. Yang, S. Li, X. Li et al., “Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility,” Phys. Rev. Lett. 109, 145004 (2012).10.1103/physrevlett.109.145004
    [74]
    A. Caruso and C. Strangio, “The quality of the illumination for a spherical capsule enclosed in a radiating cavity,” Jpn. J. Appl. Phys. 30, 1095 (1991).10.1143/jjap.30.1095
    [75]
    H. Cao, Y.-H. Chen, C. Zhai, C. Zheng, and K. Lan, “Design of octahedral spherical hohlraum for CH Rev5 ignition capsule,” Phys. Plasmas 24, 082701 (2017).10.1063/1.4994076
    [76]
    [77]
    L. F. Berzak Hopkins, N. B. Meezan, S. Le Pape, L. Divol, A. J. Mackinnon, D. D. Ho et al., “First high-convergence cryogenic implosion in a near-vacuum hohlraum,” Phys. Rev. Lett. 114, 175001 (2015).10.1103/physrevlett.114.175001
    [78]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. Weber, J. Ralph et al., “Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E,” Phys. Plasmas 28, 072706 (2021).10.1063/5.0047841
    [79]
    A. L. Kritcher, C. V. Young, H. F. Robey, C. R. Weber, A. B. Zylstra, O. A. Hurricane et al., “Design of inertial fusion implosions reaching the burning plasma regime,” Nat. Phys 18, 251–258 (2022).https://doi.org/10.1038/s41567-021-01485-9
    [80]
    S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169
    [81]
    M. B. Schneider, S. A. MacLaren, K. Widmann, N. B. Meezan, J. H. Hammer, B. E. Yoxall et al., “The size and structure of the entrance hole in gas-filled hohlraums at the National Ignition Facility,” Phys. Plasmas 22, 122705 (2015).10.1063/1.4937369
    [82]
    D. E. Hinkel, D. A. Callahan, A. B. Langdon, S. H. Langer, C. H. Still, and E. A. Williams, “Analyses of laser-plasma interactions in National Ignition Facility ignition targets,” Phys. Plasmas 15, 056314 (2008).10.1063/1.2901127
    [83]
    K. Lan, P. Gu, G. Ren, X. Li, C. Wu, W. Huo, D. Lai, and X.-T. He, “An initial design of hohlraum driven by a shaped laser pulse,” Laser Part. Beams 28, 421 (2010).10.1017/s026303461000042x
    [84]
    K. Lan, D. Lai, Y. Zhao, and X. Li, “Initial study and design on ignition ellipraum,” Laser Part. Beams 30, 175 (2012).10.1017/s0263034611000772
    [85]
    D. W. Phillion and S. M. Pollaine, “Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams,” Phys. Plasmas 1, 2963 (1994).10.1063/1.870537
    [86]
    J. M. Wallace, T. J. Murphy, N. D. Delamater, K. A. Klare, J. A. Oertel, G. R. Magelssen, E. L. Lindman, A. A. Hauer, and P. Gobby, “Inertial confinement fusion with tetrahedral hohlraums at OMEGA,” Phys. Rev. Lett. 82, 3807 (1999).10.1103/physrevlett.82.3807
    [87]
    G. Ren, K. Lan, Y.-H. Chen, Y. Li, C. Zhai, and J. Liu, “Octahedral spherical Hohlraum for Rev. 6 NIF beryllium capsule,” Phys. Plasmas 25, 102701 (2018).10.1063/1.5041026
    [88]
    X. Qiao and K. Lan, “Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion,” Phys. Rev. Lett. 126, 185001 (2021).10.1103/physrevlett.126.185001
    [89]
    F. Wang, S. Jiang, Y. Ding, S. Liu, J. Yang, S. Li et al., “Recent diagnostic developments at the 100 kJ-level laser facility in China,” Matter Radiat. Extremes 5, 035201 (2020).10.1063/1.5129726
    [90]
    Q. Wang et al., “Development of a gated X-ray imager with multiple views and spectral selectivity for observing plasmas evolution in hohlraums,” Rev. Sci. Instrum. 90, 073301 (2019).10.1063/1.5066319
    [91]
    K. Ren, S. Liu, L. Hou, H. Du, G. Ren, W. Huo et al., “Direct measurement of x-ray flux for a pre-specified highly-resolved region in hohlraum,” Opt. Express 23, A1072 (2015).10.1364/oe.23.0a1072
    [92]
    X. Li, T. Xiao, F. Chen et al., “A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets,” Matter Radiat. Extremes 3, 104 (2018).10.1016/j.mre.2018.01.004
    [93]
    D. C. Wilson, P. A. Bradley, N. M. Hoffman, F. J. Swenson, D. P. Smitherman, R. E. Chrien et al., “The development and advantages of beryllium capsules for the National Ignition Facility,” Phys. Plasmas 5, 1953 (1998).10.1063/1.872865
    [94]
    R. E. Olson, G. A. Rochau, O. L. Landen, and R. J. Leeper, “X-ray ablation rates in inertial confinement fusion capsule materials,” Phys. Plasmas 18, 032706 (2011).10.1063/1.3566009
    [95]
    J. L. Kline, S. A. Yi, A. N. Simakov, R. E. Olson, D. C. Wilson, G. A. Kyrala, T. S. Perry, S. H. Batha, A. B. Zylstra, E. L. Dewald et al., “First beryllium capsule implosions on the National Ignition Facility,” Phys. Plasmas 23, 056310 (2016).10.1063/1.4948277
    [96]
    J. L. Kline and J. D. Hager, “Aluminum X-ray mass-ablation rate measurements,” Matter Radiat. Extremes 2, 16 (2017).10.1016/j.mre.2016.09.003
    [97]
    Z. Fan, Y. Liu, B. Liu, C. Yu, K. Lan, and J. Liu, “Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments,” Matter Radiat. Extremes 2, 3 (2017).10.1016/j.mre.2016.11.003
    [98]
    X. Li, K. Lan, X. Meng, X. He, D. Lai, and T. Feng, “Study on Au + U + Au sandwich Hohlraum wall for ignition targets,” Laser Part. Beams 28, 75 (2010).10.1017/s0263034609990590
    [99]
    L. Guo, Y. Ding, P. Xing, S. Li, L. Kuang, Z. Li, T. Yi, G. Ren, Z. Wu, L. Jing et al., “Uranium hohlraum with an ultrathin uranium–nitride coating layer for low hard x-ray emission and high radiation temperature,” New J. Phys. 17, 113004 (2015).10.1088/1367-2630/17/11/113004
    [100]
    M. D. Rosen and J. H. Hammer, “Analytic expressions for optimal interial-confinement fusion hohlraum wall density and wall loss,” Phys. Rev. E 72, 056403 (2005).10.1103/PhysRevE.72.056403
    [101]
    K. Lan and P. Song, “Foam Au driven by 4ω–2ω ignition laser pulse for inertial confinement fusion,” Phys. Plasmas 24, 052707 (2017).10.1063/1.4983329
    [102]
    Y.-H. Chen, K. Lan, W. Zheng, and E. M. Campbell, “High coupling efficiency of foam spherical hohlraum driven by 2ω laser light,” Phys. Plasmas 25, 022702 (2018).10.1063/1.5007026
    [103]
    P. D. Nicolaï, J.-L. A. Feugeas, and G. P. Schurtz, “A practical non-local model for heat transport in magnetized laser plasmas,” Phys. Plasmas 13, 032701 (2006).10.1063/1.2179392
    [104]
    W. Y. Huo, K. Lan, P. J. Gu, H. Yong, and Q. H. Zeng, “Electron heat conduction under non-Maxwellian distribution in hohlraum simulation,” Phys. Plasmas 19, 012313 (2012).10.1063/1.3677357
    [105]
    K. Lan, X. Qiao, P. Song, W. Zheng, B. Qing, and J. Zhang, “Study on laser-irradiated Au plasmas by detailed configuration accounting atomic physics,” Phys. Plasmas 24, 102706 (2017).10.1063/1.5001746
    [106]
    J. Nikl, M. Holec, M. Zeman, M. Kuchařík, J. Limpouch, and S. Weber, “Macroscopic laser-plasma interaction under strong non-local transport conditions for coupled matter and radiation,” Matter Radiat. Extremes 3, 110 (2018).10.1016/j.mre.2018.03.001
    [107]
    K. Li and K. Lan, “Escape of α-particle from hot-spot for inertial confinement fusion,” Phys. Plasmas 26, 122701 (2019).10.1063/1.5126377
    [108]
    K. Li and W. Y. Huo, “Nonlocal electron heat transport under the non-Maxwellian distribution function,” Phys. Plasmas 27, 062705 (2020).10.1063/5.0002209
    [109]
    F. García-Rubio, R. Betti, J. Sanz, and H. Aluie, “Self-consistent theory of the Darrieus–Landau and Rayleigh–Taylor instabilities with self-generated magnetic fields,” Phys. Plasmas 27, 112715 (2020).10.1063/5.0022811
    [110]
    J. Nilsen, A. L. Kritcher, M. E. Martin, R. E. Tipton, H. D. Whitley, D. C. Swift et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
    [111]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu et al., “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [112]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
    [113]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sun-light lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (162) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return