Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Chen Yao-Hua, Li Zhichao, Cao Hui, Pan Kaiqiang, Li Sanwei, Xie Xufei, Deng Bo, Wang Qiangqiang, Cao Zhurong, Hou Lifei, Che Xingsen, Yang Pin, Li Yingjie, He Xiaoan, Xu Tao, Liu Yonggang, Li Yulong, Liu Xiangming, Zhang Haijun, Zhang Wei, Jiang Baibin, Xie Jun, Zhou Wei, Huang Xiaoxia, Huo Wen Yi, Ren Guoli, Li Kai, Hang Xudeng, Li Shu, Zhai Chuanlei, Liu Jie, Zou Shiyang, Ding Yongkun, Lan Ke. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums[J]. Matter and Radiation at Extremes, 2022, 7(6): 065901. doi: 10.1063/5.0102447
Citation: Chen Yao-Hua, Li Zhichao, Cao Hui, Pan Kaiqiang, Li Sanwei, Xie Xufei, Deng Bo, Wang Qiangqiang, Cao Zhurong, Hou Lifei, Che Xingsen, Yang Pin, Li Yingjie, He Xiaoan, Xu Tao, Liu Yonggang, Li Yulong, Liu Xiangming, Zhang Haijun, Zhang Wei, Jiang Baibin, Xie Jun, Zhou Wei, Huang Xiaoxia, Huo Wen Yi, Ren Guoli, Li Kai, Hang Xudeng, Li Shu, Zhai Chuanlei, Liu Jie, Zou Shiyang, Ding Yongkun, Lan Ke. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums[J]. Matter and Radiation at Extremes, 2022, 7(6): 065901. doi: 10.1063/5.0102447

Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums

doi: 10.1063/5.0102447
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: lan_ke@iapcm.ac.cn
  • Received Date: 2022-06-09
  • Accepted Date: 2022-10-03
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-01
  • A recently proposed octahedral spherical hohlraum with six laser entrance holes (LEHs) is an attractive concept for an upgraded laser facility aiming at a predictable and reproducible fusion gain with a simple target design. However, with the laser energies available at present, LEH size can be a critical issue. Owing to the uncertainties in simulation results, the LEH size should be determined on the basis of experimental evidence. However, determination of LEH size of an ignition target at a small-scale laser facility poses difficulties. In this paper, we propose to use the prepulse of an ignition pulse to determine the LEH size for ignition-scale hohlraums via LEH closure behavior, and we present convincing evidence from multiple diagnostics at the SGIII facility with ignition-scale hohlraum, laser prepulse, and laser beam size. The LEH closure observed in our experiment is in agreement with data from the National Ignition Facility. The total LEH area of the octahedral hohlraum is found to be very close to that of a cylindrical hohlraum, thus successfully demonstrating the feasibility of the octahedral hohlraum in terms of laser energy, which is crucially important for sizing an ignition-scale octahedrally configured laser system. This work provides a novel way to determine the LEH size of an ignition target at a small-scale laser facility, and it can be applied to other hohlraum configurations for the indirect drive approach.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139 (1972).10.1038/239139a0
    [2]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [3]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science, Oxford, 2004).
    [4]
    D. Clery, “Laser-powered fusion effort nears ‘ignition,’” Science 373, 841 (2021).10.1126/science.373.6557.841
    [5]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/PhysRevLett.129.075001
    [6]
    A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, J. E. Ralph, D. T. Casey et al., “Experimental achievement and signatures of ignition at the National Ignition Facility,” Phys. Rev. E 106, 025202 (2022).10.1103/PhysRevE.106.025202
    [7]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. R. Weber, D. S. Clark et al., “Design of an inertial fusion experiment exceeding the Lawson criterion for ignition,” Phys. Rev. E 106, 025201 (2022).10.1103/PhysRevE.106.025201
    [8]
    E. M. Campbell and W. J. Hogan, “The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science,” Plasma Phys. Controlled Fusion 41, B39 (1999).10.1088/0741-3335/41/12b/303
    [9]
    C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert et al., “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276 (2007).10.1364/ao.46.003276
    [10]
    J. Nilsen, A. L. Kritcher, M. E. Martin, R. E. Tipton, H. D. Whitley, D. C. Swift et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).
    [11]
    P. Michel et al., “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/PhysRevLett.102.025004
    [12]
    J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley et al., “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344–349 (2012).10.1038/nphys2239
    [13]
    A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey et al., “Burning plasma achieved in inertial fusion,” Nature 601, 542 (2022).10.1038/s41586-021-04281-w
    [14]
    R. K. Kirkwood, J. D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol et al., “A review of laser-plasma interactions physics of indirect drive fusion plasma,” Plasma Phys. Controlled Fusion 55, 103001 (2013).10.1088/0741-3335/55/10/103001
    [15]
    E. L. Dewald, F. Hartemann, P. Michel, J. Milovich, M. Hohenberger, A. Pak et al., “Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums,” Phys. Rev. Lett. 116, 075003 (2016).10.1103/PhysRevLett.116.075003
    [16]
    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan et al., “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
    [17]
    V. N. Goncharov, S. Skupsky, T. R. Boehly, J. P. Knauer, P. McKenty, V. A. Smalyuk et al., “A model of laser imprinting,” Phys. Plasmas 7, 2062 (2000).10.1063/1.874028
    [18]
    A. Pak, L. Divol, C. R. Weber, L. F. B. Hopkins, D. S. Clark, E. L. Dewald et al., “Impact of localized radiative loss on inertial confinement fusion implosions,” Phys. Rev. Lett. 124, 145001 (2020).10.1103/physrevlett.124.145001
    [19]
    [20]
    K. Lan, J. Liu, D. Lai, W. Zheng, and X.-T. He, “High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14,” Phys. Plasmas 21, 010704 (2014).10.1063/1.4863435
    [21]
    K. Lan, X.-T. He, J. Liu, W. Zheng, and D. Lai, “Octahedral spherical hohlraum and its laser arrangement for inertial fusion,” Phys. Plasmas 21, 052704 (2014).10.1063/1.4878835
    [22]
    K. Lan and W. Zheng, “Novel spherical hohlraum with cylindrical laser entrance holes and shields,” Phys. Plasmas 21, 090704 (2014).10.1063/1.4895503
    [23]
    K. Lan, “Dream fusion in octahedral spherical hohlraum,” Matter Radiat. Extremes 7, 055701 (2022).10.1063/5.0103362
    [24]
    K. Lan, J. Liu, Z. Li, X. Xie, W. Huo, Y. Chen et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003
    [25]
    W. Huo, Z. Li, D. Yang, K. Lan, J. Liu, G. Ren et al., “First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole,” Matter Radiat. Extremes 1, 2 (2016).10.1016/j.mre.2016.02.001
    [26]
    Z. Li, D. Yang, S. Li, W. Y. Huo, K. Lan, J. Liu, G. Ren et al., “Comparison of the laser spot movement inside cylindrical and spherical hohlraums,” Phys. Plasmas 24, 072711 (2017).10.1063/1.4993184
    [27]
    K. Lan, Z. Li, X. Xie, Y. H. Chen, C. Zheng, C. Zhai et al., “Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target,” Phys. Rev. E 95, 031202(R) (2017).10.1103/PhysRevE.95.031202
    [28]
    Y. Chen, Z. Li, X. Xie, C. Zheng, C. Zhai, L. Hao et al., “First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility,” Matter Radiat. Extremes 2, 77 (2017).10.1016/j.mre.2017.01.001
    [29]
    W. Y. Huo, Z. Li, Y. H. Chen, X. Xie, K. Lan, J. Liu et al., “First investigation on the radiation field of the spherical hohlraum,” Phys. Rev. Lett. 117, 025002 (2016).10.1103/PhysRevLett.117.025002
    [30]
    X. Xie, Z. Li, S. Li, Y. Huang, L. Jing, D. Yang et al., “Radiation flux study of spherical hohlraums at the SGIII prototype facility,” Phys. Plasmas 23, 112701 (2016).10.1063/1.4967271
    [31]
    W. Y. Huo, Z. Li, Y.-H. Chen, X. Xie, G. Ren, H. Cao et al., “First octahedral spherical hohlraum energetics experiment at the SGIII laser facility,” Phys. Rev. Lett. 120, 165001 (2018).10.1103/physrevlett.120.165001
    [32]
    K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao et al., “First inertial confinement fusion implosion experiment in octahedral spherical hohlraum,” Phys. Rev. Lett. 127, 245001 (2021).10.1103/physrevlett.127.245001
    [33]
    L. Ren, D. Zhao, and J. Zhu, “Beam guiding system geometric arrangement in the target area of high-power laser drivers,” High Power Laser Sci. Eng. 3, e12 (2015).10.1017/hpl.2015.6
    [34]
    P. E. Masson-Laborde, M. C. Monteil, V. Tassin, F. Philippe, P. Gauthier, A. Casner et al., “Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums,” Phys. Plasmas 23, 022703 (2016).10.1063/1.4941706
    [35]
    W. A. Farmer, M. Tabak, J. H. Hammer, P. A. Amendt, and D. E. Hinkel, “High-temperature hohlraum designs with multiple laser-entrance holes,” Phys. Plasmas 26, 032701 (2019).10.1063/1.5087140
    [36]
    [37]
    [38]
    W. Y. Wang and R. S. Craxton, “Pentagonal prism spherical hohlraums for OMEGA,” Phys. Plasmas 28, 062703 (2021).10.1063/5.0050214
    [39]
    [40]
    M. Vandenboomgaerde, J. Bastian, A. Casner, D. Galmiche, J. P. Jadaud, S. Laffite et al., “Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion,” Phys. Rev. Lett. 99, 065004 (2007).10.1103/PhysRevLett.99.065004
    [41]
    K. Lan, D. Lai, Y. Zhao, and X. Li, “Initial study and design on ignition ellipraum,” Laser Part. Beams 30, 175 (2012).10.1017/s0263034611000772
    [42]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol, A. Pak, E. L. Dewald, S. Bhandarkar et al., “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett. 120, 245003 (2018).10.1103/physrevlett.120.245003
    [43]
    P. Amendt, D. Ho, Y. Ping, V. Smalyuk, S. Khan, J. Lindl et al., “Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum,” Phys. Plasmas 26, 082707 (2019).10.1063/1.5099934
    [44]
    S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169
    [45]
    K. Lan, P. Gu, G. Ren, X. Li, C. Wu, W. Huo, D. Lai, and X.-T. He, “An initial design of hohlraum driven by a shaped laser pulse,” Laser Part. Beams 28, 421 (2010).10.1017/s026303461000042x
    [46]
    R. Sigel, R. Pakula, S. Sakabe, and G. D. Tsakiris, “X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light III Comparison of the experimental results with theoretical predictions for x-ray confinement,” Phys. Rev. A 38, 5779–5785 (1988).
    [47]
    K. Lan, T. Feng, D. Lai, Y. Xu, and X. Meng, “Study on two-dimensional transfer of radiative heating wave,” Laser Part. Beams 23, 275 (2005).10.1017/s026303460505038x
    [48]
    H. Yong, P. Song, C.-L. Zhai, D.-G. Kang, J.-F. Gu, X.-D. Hang, P.-J. Gu, and S. Jiang, “Numerical simulation of 2-D radiation-drive ignition implosion process,” Commun. Theor. Phys. 59, 737 (2013).10.1088/0253-6102/59/6/15
    [49]
    Y. Li, K. Lan, D. Lai, Y. Gao, and W. Pei, “Radiation-temperature shock scaling of 1 ns laser-driven hohlraums,” Phys. Plasmas 17, 042704 (2010).10.1063/1.3381066
    [50]
    W. Y. Huo, K. Lan, Y. Li, D. Yang, S. Li, X. Li et al., “Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility,” Phys. Rev. Lett. 109, 145004 (2012).10.1103/physrevlett.109.145004
    [51]
    X. Qiao and K. Lan, “Study of high-Z-coated ignition target by detailed configuration accounting atomic physics for direct-drive inertial confinement fusion,” Plasma Phys. Controlled Fusion 61, 014006 (2019).10.1088/1361-6587/aae2dc
    [52]
    H. Cao, Y.-H. Chen, C. Zhai, C. Zheng, and K. Lan, “Design of octahedral spherical hohlraum for CH Rev5 ignition capsule,” Phys. Plasmas 24, 082701 (2017).10.1063/1.4994076
    [53]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [54]
    M. B. Schneider, S. A. MacLaren, K. Widmann, N. B. Meezan, J. H. Hammer, B. E. Yoxall et al., “The size and structure of the entrance hole in gas-filled hohlraums at the National Ignition Facility,” Phys. Plasmas 22, 122705 (2015).10.1063/1.4937369
    [55]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008
    [56]
    F. Wang, S. Jiang, Y. Ding, S. Liu, J. Yang, S. Li et al., “Recent diagnostic developments at the 100 kJ-level laser facility in China,” Matter Radiat. Extremes 5, 035201 (2020).10.1063/1.5129726
    [57]
    [58]
    L. F. Berzak Hopkins, N. B. Meezan, S. Le Pape, L. Divol, A. J. Mackinnon, D. D. Ho et al., “First high-convergence cryogenic implosion in a near-vacuum hohlraum,” Phys. Rev. Lett. 114, 175001 (2015).10.1103/physrevlett.114.175001
    [59]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane et al., “Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E,” Phys. Plasmas 28, 072706 (2021).10.1063/5.0047841
    [60]
    G. Ren, K. Lan, Y.-H. Chen, Y. Li, C. Zhai, and J. Liu, “Octahedral spherical hohlraum for Rev. 6 NIF beryllium capsule,” Phys. Plasmas 25, 102701 (2018).10.1063/1.5041026
    [61]
    X. Qiao and K. Lan, “Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion,” Phys. Rev. Lett. 126, 185001 (2021).10.1103/physrevlett.126.185001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (59) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return