Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Jia, Zeng Ming, Li Dazhang, Wang Xiaoning, Lu Wei, Gao Jie. Injection induced by coaxial laser interference in laser wakefield accelerators[J]. Matter and Radiation at Extremes, 2022, 7(5): 054001. doi: 10.1063/5.0101098
Citation: Wang Jia, Zeng Ming, Li Dazhang, Wang Xiaoning, Lu Wei, Gao Jie. Injection induced by coaxial laser interference in laser wakefield accelerators[J]. Matter and Radiation at Extremes, 2022, 7(5): 054001. doi: 10.1063/5.0101098

Injection induced by coaxial laser interference in laser wakefield accelerators

doi: 10.1063/5.0101098
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zengming@ihep.ac.cn and lidz@ihep.ac.cn; a)Authors to whom correspondence should be addressed: zengming@ihep.ac.cn and lidz@ihep.ac.cn
  • Received Date: 2022-05-29
  • Accepted Date: 2022-07-31
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • We propose a new injection scheme that can generate electron beams with simultaneously a few permille energy spread, submillimeter milliradian emittance, and more than a 100 pC charge in laser wakefield accelerators. In this scheme, a relatively loosely focused laser pulse drives the plasma wakefield, and a tightly focused laser pulse with similar intensity triggers an interference ring pattern that creates onion-like multisheaths in the plasma wakefield. Owing to the change in wavefront curvature after the focal position of the tightly focused laser, the innermost sheath of the wakefield expands, which slows down the effective phase velocity of the wakefield and triggers injection of plasma electrons. Both quasicylindrical and fully three-dimensional particle-in-cell simulations confirm the generation of beams with the above mentioned properties.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [2]
    S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker et al., “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
    [3]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
    [4]
    C. G. R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
    [5]
    Y. Ma, J. Hua, D. Liu, Y. He, T. Zhang, J. Chen, F. Yang, X. Ning, Z. Yang, J. Zhang, C.-H. Pai, Y. Gu, and W. Lu, “Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source,” Matter Radiat. Extremes 5, 064401 (2020).10.1063/5.0016034
    [6]
    W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x
    [7]
    X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas,” Matter Radiat. Extremes 7, 014403 (2022).10.1063/5.0068265
    [8]
    W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002
    [9]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/PhysRevLett.122.084801
    [10]
    A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J. P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-chirp compensation in a laser wakefield accelerator,” Phys. Rev. Lett. 121, 074802 (2018).10.1103/PhysRevLett.121.074802
    [11]
    W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, “High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control,” Phys. Rev. Lett. 117, 124801 (2016).10.1103/physrevlett.117.124801
    [12]
    L. T. Ke, K. Feng, W. T. Wang, Z. Y. Qin, C. H. Yu, Y. Wu, Y. Chen, R. Qi, Z. J. Zhang, Y. Xu, X. J. Yang, Y. X. Leng, J. S. Liu, R. X. Li, and Z. Z. Xu, “Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma,” Phys. Rev. Lett. 126, 214801 (2021).10.1103/physrevlett.126.214801
    [13]
    W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696 (2006).10.1038/nphys418
    [14]
    A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/PhysRevLett.104.025003
    [15]
    J. Vieira, S. F. Martins, V. B. Pathak, R. A. Fonseca, W. B. Mori, and L. O. Silva, “Magnetic control of particle injection in plasma based accelerators,” Phys. Rev. Lett. 106, 225001 (2011).10.1103/physrevlett.106.225001
    [16]
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110, 185006 (2013).10.1103/physrevlett.110.185006
    [17]
    D. Umstadter, J. K. Kim, and E. Dodd, “Laser injection of ultrashort electron pulses into wakefield plasma waves,” Phys. Rev. Lett. 76, 2073–2076 (1996).10.1103/physrevlett.76.2073
    [18]
    E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, “Electron injection into plasma wakefields by colliding laser pulses,” Phys. Rev. Lett. 79, 2682–2685 (1997).10.1103/physrevlett.79.2682
    [19]
    Z. M. Sheng, W. M. Wang, R. Trines, P. Norreys, M. Chen, and J. Zhang, “Mechanisms of electron injection into laser wakefields by a weak counter-propagating pulse,” Eur. Phys. J.: Spec. Top. 175, 49–55 (2009).10.1140/epjst/e2009-01116-5
    [20]
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737–739 (2006).10.1038/nature05393
    [21]
    A. G. R. Thomas, C. D. Murphy, S. P. D. Mangles, A. E. Dangor, P. Foster, J. G. Gallacher, D. A. Jaroszynski, C. Kamperidis, K. L. Lancaster, P. A. Norreys, R. Viskup, K. Krushelnick, and Z. Najmudin, “Monoenergetic electronic beam production using dual collinear laser pulses,” Phys. Rev. Lett. 100, 255002 (2008).10.1103/physrevlett.100.255002
    [22]
    H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L.-M. Chen, T. Z. Esirkepov, A. S. Pirozhkov, J. K. Koga, A. Faenov, T. Pikuz, H. Kiriyama, H. Okada, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, H. Matsuura, S. Kondo, S. Kanazawa, A. Sugiyama, H. Daido, and S. V. Bulanov, “Electron optical injection with head-on and countercrossing colliding laser pulses,” Phys. Rev. Lett. 103, 194803 (2009).10.1103/physrevlett.103.194803
    [23]
    C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102, 164801 (2009).10.1103/physrevlett.102.164801
    [24]
    G. Golovin, W. Yan, J. Luo, C. Fruhling, D. Haden, B. Zhao, C. Liu, M. Chen, S. Chen, P. Zhang, S. Banerjee, and D. Umstadter, “Electron trapping from interactions between laser-driven relativistic plasma waves,” Phys. Rev. Lett. 121, 104801 (2018).10.1103/physrevlett.121.104801
    [25]
    Q. Chen, D. Maslarova, J. Wang, S. X. Lee, V. Horný, and D. Umstadter, “Transient relativistic plasma grating to tailor high-power laser fields, wakefield plasma waves, and electron injection,” Phys. Rev. Lett. 128, 164801 (2022).10.1103/physrevlett.128.164801
    [26]
    X. Davoine, E. Lefebvre, C. Rechatin, J. Faure, and V. Malka, “Cold optical injection producing monoenergetic, multi-GeV electron bunches,” Phys. Rev. Lett. 102, 065001 (2009).10.1103/PhysRevLett.102.065001
    [27]
    R. Lehe, A. F. Lifschitz, X. Davoine, C. Thaury, and V. Malka, “Optical transverse injection in laser-plasma acceleration,” Phys. Rev. Lett. 111, 085005 (2013).10.1103/PhysRevLett.111.085005
    [28]
    R. Hu, H. Lu, Y. Shou, C. Lin, H. Zhuo, C.-e. Chen, and X. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).10.1103/physrevaccelbeams.19.091301
    [29]
    M. Zeng, A. M. de la Ossa, and J. Osterhoff, “Ponderomotively assisted ionization injection in plasma wakefield accelerators,” New J. Phys. 22, 123003 (2020).10.1088/1367-2630/abc9ee
    [30]
    J. Wang, M. Zeng, X. Wang, D. Li, and J. Gao, “Scissor-cross ionization injection in laser wakefield accelerators,” Plasma Phys. Controlled Fusion 64, 045012 (2022).10.1088/1361-6587/ac4853
    [31]
    G. Wittig, O. Karger, A. Knetsch, Y. Xi, A. Deng, J. B. Rosenzweig, D. L. Bruhwiler, J. Smith, G. G. Manahan, Z.-M. Sheng, D. A. Jaroszynski, and B. Hidding, “Optical plasma torch electron bunch generation in plasma wakefield accelerators,” Phys. Rev. Spec. Top.–Accel. Beams 18, 081304 (2015).10.1103/physrevstab.18.081304
    [32]
    L.-L. Yu, E. Esarey, C. B. Schroeder, J.-L. Vay, C. Benedetti, C. G. R. Geddes, M. Chen, and W. P. Leemans, “Two-color laser-ionization injection,” Phys. Rev. Lett. 112, 125001 (2014).10.1103/physrevlett.112.125001
    [33]
    B. Hidding, G. Pretzler, J. B. Rosenzweig, T. Königstein, D. Schiller, and D. L. Bruhwiler, “Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout,” Phys. Rev. Lett. 108, 035001 (2012).10.1103/PhysRevLett.108.035001
    [34]
    N. Bourgeois, J. Cowley, and S. M. Hooker, “Two-pulse ionization injection into quasilinear laser wakefields,” Phys. Rev. Lett. 111, 155004 (2013).10.1103/physrevlett.111.155004
    [35]
    D. Maslarova, M. Krus, V. Horny, and J. Psikal, “Laser wakefield accelerator driven by the super-Gaussian laser beam in the focus,” Plasma Phys. Controlled Fusion 62, 024005 (2020).10.1088/1361-6587/ab57ee
    [36]
    P. Mora and T. M. Antonsen, Jr., “Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas,” Phys. Plasmas 4, 217–229 (1997).10.1063/1.872134
    [37]
    A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).10.1103/physrevaccelbeams.20.091301
    [38]
    X. L. Xu, F. Li, W. An, T. N. Dalichaouch, P. Yu, W. Lu, C. Joshi, and W. B. Mori, “High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime,” Phys. Rev. Accel. Beams 20, 111303 (2017).10.1103/physrevaccelbeams.20.111303
    [39]
    R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, “A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm,” Comput. Phys. Commun. 203, 66–82 (2016).10.1016/j.cpc.2016.02.007
    [40]
    J.-L. Vay, A. Huebl, A. Almgren, L. D. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott, D. P. Grote, M. Hogan, R. Jambunathan, R. Lehe, A. Myers, C. Ng, M. Rowan, O. Shapoval, M. Thévenet, H. Vincenti, E. Yang, N. Zaïm, W. Zhang, Y. Zhao, and E. Zoni, “Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs,” Phys. Plasmas 28, 023105 (2021).10.1063/5.0028512
    [41]
    W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.–Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
    [42]
    M. Zeng, M. Chen, Z.-M. Sheng, W. B. Mori, and J. Zhang, “Self-truncated ionization injection and consequent monoenergetic electron bunches in laser wakefield acceleration,” Phys. Plasmas 21, 030701 (2014).10.1063/1.4868404
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (237) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return