Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Shelkovenko T. A., Tilikin I. N., Pikuz S. A., Mingaleev A. R., Romanova V. M., Atoyan L., Hammer D. A.. Explosion dynamics of thin flat foils at high current density[J]. Matter and Radiation at Extremes, 2022, 7(5): 055901. doi: 10.1063/5.0098333
Citation: Shelkovenko T. A., Tilikin I. N., Pikuz S. A., Mingaleev A. R., Romanova V. M., Atoyan L., Hammer D. A.. Explosion dynamics of thin flat foils at high current density[J]. Matter and Radiation at Extremes, 2022, 7(5): 055901. doi: 10.1063/5.0098333

Explosion dynamics of thin flat foils at high current density

doi: 10.1063/5.0098333
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: ivan.tilikin@gmail.com
  • Received Date: 2022-05-07
  • Accepted Date: 2022-07-06
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • This paper presents characteristic features of the explosion of thin flat foils for currents and pulse risetimes ranging from 8 kA at 350 ns to 1000 kA at ∼100 ns. Foils made of aluminum, copper, nickel, and titanium with thicknesses of 1–100 µm are tested. Various diagnostics in the optical, UV, and x-ray spectral ranges are used to image the exploding foils from initial breakdown to complete destruction or pinching. It is shown that foil explosion is a complex process that depends on many factors, but features common to all foils are found that do not depend on the parameters of the generators or, accordingly, on the energy deposited in the foil: for example, the breakdown of flat foils under different conditions occurs at the edges of the foil. For the first time, the formation of a precursor over the central part of the foil is shown, which significantly changes the dynamics of the foil explosion.
  • loading
  • [1]
    V. S. Sedoi, G. A. Mesyats, V. I. Oreshkin, V. V. Valevich, and L. I. Chemezova, “The current density and the specific energy input in fast electrical explosion,” IEEE Trans. Plasma Sci. 27, 845 (1999).10.1109/27.782248
    [2]
    V. A. Burtsev, N. V. Kalinin, and A. V. Luchinskii, Electric Explosion of Conductors and Its Application in Electrophysical Plants (Energoatomizdat, Moscow, 1990) (in Russian).
    [3]
    V. M. Koval’chuk and Yu. A. Kotov, in High-Power Nanosecond Pulsed Sources of Accelerated Electrons, edited by G. A. Mesyats (Nauka, Novosibirsk, 1974), p. 130 (in Russian).
    [4]
    Exploding Wires, edited by W. G. Chase and H. K. Moore (Plenum, New York, 1962), Vol. 2.
    [5]
    M. Takayuki, N. Matsuo, M. Otsuka, and S. Itoh, “Study on metal foil explosion using high current,” Proc. SPIE 7522, 75222A (2010).10.1117/12.851562
    [6]
    M. V. Babykin, K. A. Baigarin, A. V. Bartov, Yu. M. Gorbulin, and V. N. Makhov, “Vacuum-UV diagnostics of foil heating by a focused electron beam,” Sov. J. Plasma Phys. 8, 237 (1982).
    [7]
    V. V. Aleksandrov, M. M. Basko, A. V. Branitskii, E. V. Grabovsky, A. N. Gritsuk, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, and I. N. Frolov, “Investigation of x-ray self-emission of plasma of targets heated by high-power pulses of soft x-ray radiation,” Plasma Phys. Rep. 47, 669 (2021).10.1134/s1063780x21070035
    [8]
    S. A. Pikuz, T. A. Shelkovenko, I. N. Tilikin, E. A. Bolkhovitinov, A. A. Kologrivov, A. R. Mingaleev, V. R. Romanova, and A. A. Rupasov, “Study of SXR/EUV radiation of exploded foils and wires with spectral, spatial and temporal resolution simultaneously on KING electric discharge facility,” Plasma Sources Sci. Technol. 30, 115012 (2021).10.1088/1361-6595/ac3211
    [9]
    V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganesyan, T. A. Shelkovenko, and S. A. Pikuz, “Electric explosion of fine wires: Three groups of materials,” Plasma Phys. Rep. 41, 617 (2015).10.1134/s1063780x15080085
    [10]
    A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, A. V. Shishlov, I. I. Beilis, and R. B. Baksht, “Study of the strata formation during the explosion of a wire in vacuum,” Phys. Plasmas 15, 102706 (2008).10.1063/1.3000390
    [11]
    T. J. Awe, K. J. Peterson, E. P. Yu, R. D. McBride, D. B. Sinars, M. R. Gomez, C. A. Jennings, M. R. Martin, S. E. Rosental, D. G. Schroen, A. B. Sefkow, S. A. Slutz, K. Tomlinson, and R. A. Vesey, “Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners,” Phys. Rev. Lett. 116, 065001 (2016).10.1103/PhysRevLett.116.065001
    [12]
    K. J. Peterson, D. B. Sinars, E. P. Yu, M. C. Herrmann, M. E. Cuneo, S. A. Slutz, I. C. Smith, B. W. Atherton, M. D. Knudson, and C. Nakhleh, “Electrothermal instability growth in magnetically driven pulsed power liners,” Phys. Plasmas 19, 092701 (2012).10.1063/1.4751868
    [13]
    R. D. McBride, S. A. Slutz, R. A. Vesey, M. R. Gomez, A. B. Sefkow, S. B. Hansen, P. F. Knapp, P. F. Schmit, M. Geissel, A. J. Harvey-Thompson, C. A. Jennings, E. C. Harding, T. J. Awe, D. C. Rovang, K. D. Hahn et al., “Exploring magnetized liner inertial fusion with a semi-analytic model,” Phys. Plasmas 23, 012705 (2016).10.1063/1.4939479
    [14]
    L. Atoyan, D. A. Hammer, B. R. Kusse, T. Byvank, A. D. Cahill, J. B. Greenly, S. A. Pikuz, and T. A. Shelkovenko, “Helical plasma striations in liners in the presence of an external axial magnetic field,” Phys. Plasmas 23, 022708 (2016).10.1063/1.4942787
    [15]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, V. M. Romanova, S. N. Mishin, L. Atoyan, and. D. A. Hammer, “A study of thin foil explosion,” IEEE Trans. Plasma Sci. 46, 3741 (2018).10.1109/tps.2018.2852063
    [16]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, L. Atoyan, and D. A. Hammer, “Study of electric explosion of flat micron-thick foils at current densities of (5–50) × 108 A/cm2,” Plasma Phys. Rep. 44, 236 (2018).10.1134/s1063780x18020113
    [17]
    I. N. Tilikin, T. A. Shelkovenko, A. R. Mingaleev, V. M. Romanova, and S. A. Pikuz, “Early stage of the explosion of thin flat foils in a high-current diode at a current of 40–80 kA,” J. Exp. Theor. Phys. 128, 946 (2019).10.1134/s1063776119050157
    [18]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer, “Study of the structure of exploding flat foils at superhighcurrent density,” J. Appl. Phys. 128, 205902 (2020).10.1063/5.0019330
    [19]
    T. A. Shelkovenko, I. N. Tilikin, A. R. Mingaleev, and S. A. Pikuz, “Features of explosion of thin aluminum foils on an 8 kA, 350 ns pulse generator,” Phys. Plasmas 27, 043508 (2020).10.1063/1.5133126
    [20]
    T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, “A review of projection radiography of plasma and biological objects in X-pinch radiation,” Plasma Phys. Rep. 42, 226 (2016).10.1134/s1063780x16030065
    [21]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, M. D. Mitchell, S. N. Bland, and D. A. Hammer, “Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA,” Matter Radiat. Extremes 3, 267 (2018).10.1016/j.mre.2018.09.001
    [22]
    V. M. Romanova, G. V. Ivanenkov, E. V. Parkevich, I. N. Tilikin, M. A. Medvedev, T. A. Shelkovenko, S. A. Pikuz, and A. S. Selyukov, “Laser scattering by submicron droplets formed during the electrical explosion of thin metal wires,” J. Phys. D: Appl. Phys. 54, 175201 (2021).10.1088/1361-6463/abdce5
    [23]
    T. A. Shelkovenko, I. N. Tilikin, E. A. Bolkhovitinov, A. A. Kologrivov, A. R. Mingaleev, V. M. Romanova, V. B. Zorin, A. A. Rupasov, and S. A. Pikuz, “A study of the ultraviolet radiation of hybrid X-pinches,” Plasma Phys. Rep. 46, 10 (2020).10.1134/s1063780x2001016x
    [24]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part I,” Plasma Phys. Rep. 41, 291 (2015).10.1134/s1063780x15040054
    [25]
    R. D. McBride, T. A. Shelkovenko, S. A. Pikuz, D. A. Hammer, J. B. Greenly, B. R. Kusse, J. D. Douglass, P. F. Knapp, K. S. Bell, I. C. Blesener, and D. A. Chalenski, “Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator,” Phys. Plasmas 16, 012706 (2009).10.1063/1.3054537
    [26]
    S. C. Bott, D. M. Haas, Y. Eshaq, U. Ueda, F. N. Beg, D. A. Hammer, B. Kusse, J. Greenly, T. A. Shelkovenko, S. A. Pikuz, I. C. Blesener, R. D. McBride, J. D. Douglass, K. Bell, P. Knapp, J. P. Chittenden, S. V. Lebedev, S. N. Bland, G. N. Hall, F. A. Suzuki Vidal, A. Marocchino, A. Harvey-Thomson, M. G. Haines, J. B. A. Palmer, A. Esaulov, and D. J. Ampleford, “Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array Z pinches at 1 MA,” Phys. Plasmas 16, 072701 (2009).10.1063/1.3159864
    [27]
    S. V. Lebedev, D. J. Ampleford, S. N. Bland, S. C. Bott, J. P. Chittenden, J. Goyer, C. Jennings, M. G. Haines, G. N. Hall, D. A. Hammer, J. B. A. Palmer, S. A. Pikuz, T. A. Shelkovenko, and T. Christoudias, “Physics of wire array Z-pinch implosions: Experiments at Imperial College,” Plasma Phys. Controlled Fusion 47, A91 (2005).10.1088/0741-3335/47/5a/009
    [28]
    M. E. Cuneo, D. B. Sinars, E. M. Waisman, D. E. Bliss, W. A. Stygar, R. A. Vesey, R. W. Lemke, I. C. Smith, P. K. Rambo, J. L. Porter, G. A. Chandler, T. J. Nash, M. G. Mazarakis, R. G. Adams, E. P. Yu, K. W. Struve, and T. A. Mehlhorn, “Compact single and nested tungsten-wire-array dynamics at 14–19 MA and applications to inertial confinement fusion,” Phys. Plasmas 13, 056318 (2006).10.1063/1.2177140
    [29]
    S. N. Bland, S. V. Lebedev, J. P. Chittenden, G. N. Hall, F. Suzuki-Vidal, D. J. Ampleford, S. C. Bott, J. B. A. Palmer, S. A. Pikuz, and T. A. Shelkovenko, “Implosion and stagnation of wire array Z pinches,” Phys. Plasmas 14, 056315 (2007).10.1063/1.2671940
    [30]
    D. J. Ampleford, S. V. Lebedev, S. N. Bland, S. C. Bott, J. P. Chittenden, C. A. Jennings, V. L. Kantsyrev, A. S. Safronova, V. V. Ivanov, D. A. Fedin, P. J. Laca, M. F. Yilmaz, V. Nalajala, I. Shrestha, K. Williamson, G. Osborne, A. Haboub, and A. Ciardi, “Dynamics of conical wire array Z-pinch implosions,” Phys. Plasmas 14, 102704 (2007).10.1063/1.2795129
    [31]
    V. L. Kantsyrev, A. S. Safronova, D. A. Fedin, V. V. Ivanov, A. A. Esaulov, V. Nalajala, I. Shrestha, S. Pokala, K. Williamson, N. D. Ouart, M. F. Yilmaz, P. Laca, T. E. Cowan, L. I. Rudakov, B. Jones, C. A. Coverdale, C. Deeney, P. D. LePell, A. L. Velikovich, and A. S. Chuvatin, “Radiation properties and implosion dynamics of planar and cylindrical wire arrays, asymmetric and symmetric, uniform and combined X-pinches on the UNR 1-MA zebra generator,” IEEE Trans. Plasma Sci. 34, 194 (2006).10.1109/tps.2006.872173
    [32]
    V. L. Kantsyrev, A. S. Chuvatin, A. S. Safronova, L. I. Rudakov, A. A. Esaulov, A. L. Velikovich, I. Shrestha, A. Astanovitsky, G. C. Osborne, V. V. Shlyaptseva, M. E. Weller, S. Keim, A. Stafford, and M. Cooper, “Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research,” Phys. Plasmas 21, 031204 (2014).10.1063/1.4865367
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (40) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return