Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Li Xing, Zhang Xiaohua, Liu Yong, Yang Guochun. Bonding-unsaturation-dependent superconductivity in P-rich sulfides[J]. Matter and Radiation at Extremes, 2022, 7(4): 048402. doi: 10.1063/5.0098035
Citation: Li Xing, Zhang Xiaohua, Liu Yong, Yang Guochun. Bonding-unsaturation-dependent superconductivity in P-rich sulfides[J]. Matter and Radiation at Extremes, 2022, 7(4): 048402. doi: 10.1063/5.0098035

Bonding-unsaturation-dependent superconductivity in P-rich sulfides

doi: 10.1063/5.0098035
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yanggc468@nenu.edu.cn
  • Received Date: 2022-05-04
  • Accepted Date: 2022-06-15
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • The covalent frameworks found in certain compounds, such as the S–H skeleton in H3S and the H cage in LaH10, play an essential role in their superconductivity. These compounds have the feature of bonding unsaturation (a deficiency of electrons in their covalent bonding) in common. Developing an understanding of the relationship between superconductivity and bonding unsaturation in these materials can provide new ideas for the design of superconducting materials. In this work, we explored the high-pressure phase diagram of binary P–S compounds using first-principles swarm structural calculations. In addition to the previously reported P2S and P3S structures, we identified that P5S, P8S, and P11S also have a common structural character of six-coordinated octahedral networks; however, their bonding unsaturation are distinct due to the different valence electron numbers and unequal ratios of P and S atoms. These features provide an ideal model for exploring the bonding-unsaturation dependence of superconductivity. We estimated the average bonding unsaturation of these P-rich compounds based on the valence electron numbers and the coordination numbers of the central P/S atoms. Interestingly, the resultant average bonding unsaturation was found to be proportional to the predicted superconducting transition temperature. This finding was also verified in MH9 (M = Y, Th, and Pr) and doped H3S (Si, C, and P) compounds. Our work provides an opportunity to gain a deeper understanding of bonding-unsaturation-dependent superconductivity.
  • loading
  • [1]
    W. Lu, S. Liu, G. Liu, K. Hao, M. Zhou, P. Gao, H. Wang, J. Lv, H. Gou, and G. Yang, “Disproportionation of SO2 at high pressure and temperature,” Phys. Rev. Lett. 128, 106001 (2022).10.1103/physrevlett.128.106001
    [2]
    Y. Liu, R. Wang, Z. Wang, D. Li, and T. Cui, “Formation of twelve-fold iodine coordination at high pressure,” Nat. Commun. 13, 412 (2022).10.1038/s41467-022-28083-4
    [3]
    Y. Chen, X. Feng, J. Chen, X. Cai, B. Sun, H. Wang, H. Du, S. A. T. Redfern, Y. Xie, and H. Liu, “Ultrahigh-pressure induced decomposition of silicon disulfide into silicon-sulfur compounds with high coordination numbers,” Phys. Rev. B 99, 184106 (2019).10.1103/physrevb.99.184106
    [4]
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
    [5]
    A. R. Oganov, C. J. Pickard, Q. Zhu, and R. J. Needs, “Structure prediction drives materials discovery,” Nat. Rev. Mater. 4, 331–348 (2019).10.1038/s41578-019-0101-8
    [6]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).10.1146/annurev-conmatphys-031218-013413
    [7]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [8]
    D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, and I. S. Lyubutin, “Superconductivity at 253 K in lanthanum-yttrium ternary hydrides,” Mater. Today 48, 18–28 (2021).10.1016/j.mattod.2021.03.025
    [9]
    X. Zhang, Y. Zhao, and G. Yang, “Superconducting ternary hydrides under high pressure,” Wiley Interdiscip. Rev.: Comput. Mol. Sci 12, e1582 (2022).10.1002/wcms.1582
    [10]
    K. Gao, W. Cui, J. Chen, Q. Wang, J. Hao, J. Shi, C. Liu, S. Botti, M. A. L. Marques, and Y. Li, “Superconducting hydrogen tubes in hafnium hydrides at high pressure,” Phys. Rev. B 104, 214511 (2021).10.1103/physrevb.104.214511
    [11]
    H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
    [12]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
    [13]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [14]
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
    [15]
    H. M. James and A. S. Coolidge, “The ground state of the hydrogen molecule,” J. Chem. Phys. 1, 825–835 (1933).10.1063/1.1749252
    [16]
    F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and R. Weihrich, “The extended stability range of phosphorus allotropes,” Angew. Chem., Int. Ed. 53, 11629–11633 (2014).10.1002/anie.201404147
    [17]
    T. Sugimoto, Y. Akahama, H. Fujihisa, Y. Ozawa, H. Fukui, N. Hirao, and Y. Ohishi, “Identification of superlattice structure cI16 in the P-VI phase of phosphorus at 340 GPa and room temperature via x-ray diffraction,” Phys. Rev. B 86, 024109 (2012).10.1103/physrevb.86.024109
    [18]
    H. Luo, R. G. Greene, and A. L. Ruoff, “β-Po phase of sulfur at 162 GPa: X-Ray diffraction study to 212 GPa,” Phys. Rev. Lett. 71, 2943 (1993).10.1103/physrevlett.71.2943
    [19]
    A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).10.1063/1.2210932
    [20]
    T. Rödl, R. Weihrich, J. Wack, J. Senker, and A. Pfitzner, “Rational syntheses and structural characterization of sulfur‐rich phosphorus polysulfides: α‐P2S7 and β‐P2S7,” Angew. Chem., Int. Ed. 50, 10996–11000 (2011).10.1002/anie.201103485
    [21]
    Y. C. Leung, J. Waser, S. v. Houten, A. Vos, G. A. Wiegers, and E. H. Wiebenga, “The crystal structure of P4S3,” Acta Crystallogr. 10, 574–582 (1957).10.1107/s0365110x57002042
    [22]
    B. Wallis, G.-U. Wolf, and P. Leibnitz, “Über die struktur einer neuen modifikation des phosphorsulfids P4S9,” Z. Anorg. Allg. Chem. 588, 139–146 (1990).10.1002/zaac.19905880118
    [23]
    A. Vos, R. Olthof, F. van Bolhuis, and R. Botterweg, “Refinement of the crystal structures of some phosphorus sulphides,” Acta Crystallogr. 19, 864–867 (1965).10.1107/s0365110x65004516
    [24]
    S. Van Houten and E. H. Wiebenga, “The crystal structure of P4S5,” Acta Crystallogr. 10, 156–160 (1957).10.1107/s0365110x57000523
    [25]
    D. Wei, J. Yin, Z. Ju, S. Zeng, H. Li, W. Zhao, Y. Wei, and H. Li, “Cage-like P4S3 molecule as promising anode with high capacity and cycling stability for Li+/Na+/K+ storage,” J. Energy Chem. 50, 187–194 (2020).10.1016/j.jechem.2020.03.021
    [26]
    M. Li, X. Liu, Q. Li, Z. Jin, W. Wang, A. Wang, Y. Huang, and Y. Yang, “P4S10 modified lithium anode for enhanced performance of lithium-sulfur batteries,” J. Energy Chem. 41, 27–33 (2020).10.1016/j.jechem.2019.03.038
    [27]
    H. Katzke and P. Tolédano, “Displacive mechanisms and order-parameter symmetries for the A7-incommensurate-bcc sequences of high-pressure reconstructive phase transitions in Group Va elements,” Phys. Rev. B 77, 024109 (2008).10.1103/physrevb.77.024109
    [28]
    A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, “Decomposition products of phosphine under pressure: PH2 stable and superconducting?,” J. Am. Chem. Soc. 138, 1884–1892 (2016).10.1021/jacs.5b10180
    [29]
    J. A. Flores-Livas, M. Amsler, C. Heil, A. Sanna, L. Boeri, G. Profeta, C. Wolverton, S. Goedecker, and E. Gross, “Superconductivity in metastable phases of phosphorus–hydride compounds under high pressure,” Phys. Rev. B 93, 020508 (2016).10.1103/physrevb.93.020508
    [30]
    H. Liu, Y. Li, G. Gao, J. S. Tse, and I. I. Naumov, “Crystal structure and superconductivity of PH3 at high pressures,” J. Phys. Chem. C 120, 3458–3461 (2016).10.1021/acs.jpcc.5b12009
    [31]
    Y. Yuan, Y. Li, G. Fang, G. Liu, C. Pei, X. Li, H. Zheng, K. Yang, and L. Wang, “Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides,” Natl. Sci. Rev. 6, 524–531 (2019).10.1093/nsr/nwz010
    [32]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 K at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
    [33]
    Y. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. Yao, “Hole-doped room-temperature superconductivity in H3S1−xZx (Z = C, Si),” Mater. Today Phys. 15, 100330 (2020).10.1016/j.mtphys.2020.100330
    [34]
    Y. Ge, F. Zhang, and Y. Yao, “First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution,” Phys. Rev. B 93, 224513 (2016).10.1103/physrevb.93.224513
    [35]
    F. Fan, D. A. Papaconstantopoulos, M. J. Mehl, and B. M. Klein, “High-temperature superconductivity at high pressures for H3SixP1−x, H3PxS1−x, and H3ClxS1−x,” J. Phys. Chem. Solids 99, 105–110 (2016).10.1016/j.jpcs.2016.08.007
    [36]
    M. Amsler, “Thermodynamics and superconductivity of SxSe1−xH3,” Phys. Rev. B 99, 060102 (2019).10.1103/physrevb.99.060102
    [37]
    N. Geng, T. Bi, and E. Zurek, “Structural diversity and superconductivity in S–P–H ternary hydrides underpressure,” J. Phys. Chem. C 126, 7208 (2022).10.1021/acs.jpcc.1c10976
    [38]
    Y. Sun, Y. Tian, B. Jiang, X. Li, H. Li, T. Iitaka, X. Zhong, and Y. Xie, “Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation,” Phys. Rev. B 101, 174102 (2020).10.1103/physrevb.101.174102
    [39]
    Z. Shao, D. Duan, Y. Ma, H. Yu, H. Song, H. Xie, D. Li, F. Tian, B. Liu, and T. Cui, “Ternary superconducting cophosphorus hydrides stabilized via lithium,” npj Comput. Mater. 5, 104 (2019).10.1038/s41524-019-0244-6
    [40]
    X. Li, Y. Xie, Y. Sun, P. Huang, H. Liu, C. Chen, and Y. Ma, “Chemically tuning stability and superconductivity of P–H compounds,” J. Phys. Chem. Lett. 11, 935–939 (2020).10.1021/acs.jpclett.9b03856
    [41]
    X. Li, X. Zhang, A. Bergara, G. Gao, Y. Liu, and G. Yang, “Superconducting LaP2H2 with graphene like phosphorus layers,” Phys. Rev. B 105, 024504 (2022).10.1103/physrevb.105.024504
    [42]
    Y.-L. Li, E. Stavrou, Q. Zhu, S. M. Clarke, Y. Li, and H.-M. Huang, “Superconductivity in the van der Waals layered compound PS2,” Phys. Rev. B 99, 220503 (2019).10.1103/physrevb.99.220503
    [43]
    Y. Liu, C. Wang, X. Chen, P. Lv, H. Sun, and D. Duan, “Pressure-induced structures and properties in P–S compounds,” Solid State Commun. 293, 6–10 (2019).10.1016/j.ssc.2019.01.024
    [44]
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46, 6671–6687 (1992).10.1103/physrevb.46.6671
    [45]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [46]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
    [47]
    A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).10.1063/1.458517
    [48]
    R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, “LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory,” J. Comput. Chem. 41, 1931–1940 (2020).10.1002/jcc.26353
    [49]
    A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
    [50]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [51]
    O. Degtyareva, E. Gregoryanz, M. Somayazulu, P. Dera, H.-K. Mao, and R. J. Hemley, “Novel chain structures in group VI elements,” Nat. Mater. 4, 152–155 (2005).10.1038/nmat1294
    [52]
    J. R. Van Wazer, “Principles of phosphorus chemistry. I. Some generalities concerning multiple bonding,” J. Am. Chem. Soc. 78, 5709–5715 (1956).10.1021/ja01603a001
    [53]
    T. K. Chattopadhyay, W. May, H. G. von Schnering, and G. S. Pawley, “X-ray and neutron diffraction study of the crystal structure of α-P4S3,” Z. Kristallogr. - Cryst. Mater. 165, 47–64 (1983).10.1524/zkri.1983.165.1-4.47
    [54]
    P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905–922 (1975).10.1103/physrevb.12.905
    [55]
    P. B. Allen and B. Mitrović, “Theory of superconducting Tc,” Solid State Phys. 37, 1–92 (1983).10.1016/s0081-1947(08)60665-7
    [56]
    J. P. Carbotte, “Properties of boson-exchange superconductors,” Rev. Mod. Phys. 62, 1027 (1990).10.1103/revmodphys.62.1027
    [57]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [58]
    D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
    [59]
    D. Zhou, D. V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A. R. Oganov, and T. Cui, “Superconducting praseodymium superhydrides,” Sci. Adv. 6, eaax6849 (2020).10.1126/sciadv.aax6849
    [60]
    A. Nakanishi, T. Ishikawa, and K. Shimizu, “First-principles study on superconductivity of P- and Cl-doped H3S,” J. Phys. Soc. Jpn. 87, 124711 (2018).10.7566/jpsj.87.124711
    [61]
    T. Wang, M. Hirayama, T. Nomoto, T. Koretsune, R. Arita, and J. A. Flores-Livas, “Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510
    [62]
    Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, and Y. Huang, “Dissociation products and structures of solid H2S at strong compression,” Phys. Rev. B 93, 020103 (2016).10.1103/physrevb.93.020103
    [63]
    P. Morel and P. W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” Phys. Rev. 125, 1263–1271 (1962).10.1103/physrev.125.1263
    [64]
    A. Sanna, J. A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, and E. K. U. Gross, “Ab initio Eliashberg theory: Making genuine predictions of superconducting features,” J. Phys. Soc. Jpn. 87, 041012 (2018).10.7566/jpsj.87.041012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (152) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return