Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Bacon E. F. J., King M., Wilson R., Frazer T. P., Gray R. J., McKenna P.. High order modes of intense second harmonic light produced from a plasma aperture[J]. Matter and Radiation at Extremes, 2022, 7(5): 054401. doi: 10.1063/5.0097585
Citation: Bacon E. F. J., King M., Wilson R., Frazer T. P., Gray R. J., McKenna P.. High order modes of intense second harmonic light produced from a plasma aperture[J]. Matter and Radiation at Extremes, 2022, 7(5): 054401. doi: 10.1063/5.0097585

High order modes of intense second harmonic light produced from a plasma aperture

doi: 10.1063/5.0097585
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: paul.mckenna@strath.ac.uk
  • Received Date: 2022-04-29
  • Accepted Date: 2022-06-23
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Because of their ability to sustain extremely high-amplitude electromagnetic fields and transient density and field profiles, plasma optical components are being developed to amplify, compress, and condition high-power laser pulses. We recently demonstrated the potential to use a relativistic plasma aperture—produced during the interaction of a high-power laser pulse with an ultrathin foil target—to tailor the spatiotemporal properties of the intense fundamental and second-harmonic light generated [Duff et al., Sci. Rep. 10 , 105 (2020)]. Herein, we explore numerically the interaction of an intense laser pulse with a preformed aperture target to generate second-harmonic laser light with higher-order spatial modes. The maximum generation efficiency is found for an aperture diameter close to the full width at half maximum of the laser focus and for a micrometer-scale target thickness. The spatial mode generated is shown to depend strongly on the polarization of the drive laser pulse, which enables changing between a linearly polarized TEM01 mode and a circularly polarized Laguerre–Gaussian LG01 mode. This demonstrates the use of a plasma aperture to generate intense higher-frequency light with selectable spatial mode structure.
  • loading
  • [1]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2006).10.1103/revmodphys.78.309
    [2]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
    [3]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751
    [4]
    S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A 299, 240–247 (2002).10.1016/s0375-9601(02)00521-2
    [5]
    K. Zeil, M. Baumann, E. Beyreuther, T. Burris-Mog, T. E. Cowan, W. Enghardt, L. Karsch, S. D. Kraft, L. Laschinsky, J. Metzkes et al., “Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses,” Appl. Phys. B 110, 437–444 (2013).10.1007/s00340-012-5275-3
    [6]
    F. Kroll, F.-E. Brack, C. Bernert, S. Bock, E. Bodenstein, K. Brüchner, T. E. Cowan, L. Gaus, R. Gebhardt, U. Helbig et al., “Tumour irradiation in mice with a laser-accelerated proton beam,” Nat. Phys. 18, 316–322 (2022).10.1038/s41567-022-01520-3
    [7]
    M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov et al., “Laser-driven proton acceleration: Source optimization and radiographic applications,” Plasma Phys. Controlled Fusion 50, 124040 (2008).10.1088/0741-3335/50/12/124040
    [8]
    M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici, “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
    [9]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
    [10]
    J. C. Fernández, B. J. Albright, F. N. Beg, M. E. Foord, B. M. Hegelich, J. J. Honrubia, M. Roth, R. B. Stephens, and L. Yin, “Fast ignition with laser-driven proton and ion beams,” Nucl. Fusion 54, 054006 (2014).10.1088/0029-5515/54/5/054006
    [11]
    E. Cormier-Michel, E. Esarey, C. G. R. Geddes, C. B. Schroeder, K. Paul, P. J. Mullowney, J. R. Cary, and W. P. Leemans, “Control of focusing fields in laser-plasma accelerators using higher-order modes,” Phys. Rev. Spec. Top.–Accel. Beams 14, 031303 (2011).10.1103/physrevstab.14.031303
    [12]
    J. Vieira and J. T. Mendonça, “Nonlinear laser driven donut wakefields for positron and electron acceleration,” Phys. Rev. Lett. 112, 215001 (2014).10.1103/physrevlett.112.215001
    [13]
    J. Vieira, J. T. Mendonça, and F. Quéré, “Optical control of the topology of laser-plasma accelerators,” Phys. Rev. Lett. 121, 054801 (2018).10.1103/PhysRevLett.121.054801
    [14]
    J. W. Wang, C. B. Schroeder, R. Li, M. Zepf, and S. G. Rykovanov, “Plasma channel undulator excited by high-order laser modes,” Sci. Rep. 7, 16884 (2017).10.1038/s41598-017-16971-5
    [15]
    U. Teubner, U. Wagner, and E. Förster, “Sub-10 fs gating of optical pulses,” J. Phys. B: At., Mol. Opt. Phys. 34, 2993 (2001).10.1088/0953-4075/34/15/306
    [16]
    B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75, 645–649 (2004).10.1063/1.1646737
    [17]
    G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J. P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E 69, 026402 (2004).10.1103/PhysRevE.69.026402
    [18]
    M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, and R. Kodama, “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314–2316 (2010).10.1364/ol.35.002314
    [19]
    R. Wilson, M. King, R. J. Gray, D. C. Carroll, R. J. Dance, C. Armstrong, S. J. Hawkes, R. J. Clarke, D. J. Robertson, D. Neely, and P. McKenna, “Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities,” Phys. Plasmas 23, 033106 (2016).10.1063/1.4943200
    [20]
    R. Wilson, M. King, R. J. Gray, D. C. Carroll, R. J. Dance, N. M. H. Butler, C. Armstrong, S. J. Hawkes, R. J. Clarke, D. J. Robertson et al., “Development of focusing plasma mirrors for ultraintense laser-driven particle and radiation sources,” Quantum Beam Sci 2, 1 (2018).10.3390/qubs2010001
    [21]
    J. Ren, W. Cheng, S. Li, and S. Suckewer, “A new method for generating ultraintense and ultrashort laser pulses,” Nat. Phys. 3, 732–736 (2007).10.1038/nphys717
    [22]
    R. Lichters, J. Meyer‐ter‐Vehn, and A. Pukhov, “Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Phys. Plasmas 3, 3425–3437 (1996).10.1063/1.871619
    [23]
    A. Tarasevitch, A. Orisch, D. von der Linde, P. Balcou, G. Rey, J.-P. Chambaret, U. Teubner, D. Klöpfel, and W. Theobald, “Generation of high-order spatially coherent harmonics from solid targets by femtosecond laser pulses,” Phys. Rev. A 62, 023816 (2000).10.1103/physreva.62.023816
    [24]
    U. Teubner, K. Eidmann, U. Wagner, U. Andiel, F. Pisani, G. D. Tsakiris, K. Witte, J. Meyer-ter-Vehn, T. Schlegel, and E. Förster, “Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses,” Phys. Rev. Lett. 92, 185001 (2004).10.1103/physrevlett.92.185001
    [25]
    G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, “Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump,” Phys. Rev. Lett. 81, 4879 (1998).10.1103/physrevlett.81.4879
    [26]
    V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448 (1999).10.1103/physrevlett.82.4448
    [27]
    R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).10.1038/nphys1793
    [28]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
    [29]
    Q. Chen, D. Maslarova, J. Wang, S. X. Lee, V. Horný, and D. Umstadter, “Transient relativistic plasma grating to tailor high-power laser fields, wakefield plasma waves, and electron injection,” Phys. Rev. Lett. 128, 164801 (2022).10.1103/physrevlett.128.164801
    [30]
    H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 113103 (2005).10.1063/1.2126587
    [31]
    M. R. Edwards, V. R. Munirov, A. Singh, N. M. Fasano, E. Kur, N. Lemos, J. M. Mikhailova, J. S. Wurtele, and P. Michel, “Holographic plasma lenses,” Phys. Rev. Lett. 128, 065003 (2022).10.1103/PhysRevLett.128.065003
    [32]
    Z. M. Sheng, K. Mima, J. Zhang, and H. Sanuki, “Emission of electromagnetic pulses from laser wakefields through linear mode conversion,” Phys. Rev. Lett. 94, 095003 (2005).10.1103/PhysRevLett.94.095003
    [33]
    B. Gonzalez-Izquierdo, R. J. Gray, M. King, R. J. Dance, R. Wilson, J. McCreadie, N. M. H. Butler, R. Capdessus, S. Hawkes, J. S. Green et al., “Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction,” Nat. Phys. 12, 505–512 (2016).10.1038/nphys3613
    [34]
    B. Gonzalez-Izquierdo, M. King, R. J. Gray, R. Wilson, R. J. Dance, H. Powell, D. A. Maclellan, J. McCreadie, N. M. H. Butler, S. Hawkes et al., “Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency,” Nat. Commun. 7, 12891 (2016).10.1038/ncomms12891
    [35]
    V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, “Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil,” Phys. Plasmas 5, 2727–2741 (1998).10.1063/1.872961
    [36]
    M. J. Duff, R. Wilson, M. King, B. Gonzalez-Izquierdo, A. Higginson, S. D. R. Williamson, Z. E. Davidson, R. Capdessus, N. Booth, S. Hawkes, D. Neely, R. J. Gray, and P. McKenna, “High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture,” Sci. Rep. 10, 105 (2020).10.1038/s41598-019-57119-x
    [37]
    L. Yi, “High-harmonic generation and spin-orbit interaction of light in a relativistic oscillating window,” Phys. Rev. Lett. 126, 134801 (2021).10.1103/physrevlett.126.134801
    [38]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [39]
    E. J. Dolier, M. King, R. Wilson, R. J. Gray, and P. McKenna, “Multi-parameter Bayesian optimization of laser-driven ion acceleration in particle-in-cell simulations,” New J. Phys. (published online).10.1088/1367-2630/ac7db4
    [40]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [41]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [42]
    M. R. Siegrist, “Self-focusing in a plasma due to ponderomotive forces and relativistic effects,” Opt. Commun. 16, 402–407 (1976).10.1016/0030-4018(76)90028-6
    [43]
    T. Frazer, R. Wilson, M. King, N. Butler, D. Carroll, M. Duff, A. Higginson, J. Jarrett, Z. Davidson, C. Armstrong et al., “Enhanced laser intensity and ion acceleration due to self-focusing in relativistically transparent ultrathin targets,” Phys. Rev. Res. 2, 042015 (2020).10.1103/physrevresearch.2.042015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (146) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return