Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Lehmann G., Spatschek K. H.. Reflection and transmission properties of a finite-length electron plasma grating[J]. Matter and Radiation at Extremes, 2022, 7(5): 054402. doi: 10.1063/5.0096386
Citation: Lehmann G., Spatschek K. H.. Reflection and transmission properties of a finite-length electron plasma grating[J]. Matter and Radiation at Extremes, 2022, 7(5): 054402. doi: 10.1063/5.0096386

Reflection and transmission properties of a finite-length electron plasma grating

doi: 10.1063/5.0096386
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: goetz@tp1.uni-duesseldorf.de
  • Received Date: 2022-04-18
  • Accepted Date: 2022-07-10
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • Considered here is a plasma grating generated by two counterpropagating short laser pulses. Because of the shortness of the laser pulses, the plasma dynamics are determined by only electrons, which respond to the ponderomotive pressure generated by the interacting laser fields. An electron grating cannot exist for longer than the inverse ion plasma frequency, and so because of the limited time of the ponderomotive pressure, both the life time and spatial extent of an electron grating are finite. When one of the short laser pulses is circularly polarized (propagating in the x direction with electric field vectors in the yz plane) and the other is linearly y-polarized, the electron grating is produced by the y components. Meanwhile, the z component is partially reflected, and only a fraction of it is transmitted. Thus, the finite plasma grating can either alter the polarization of the yz-polarized pulse or act as a pulse splitter. The present paper is focused on the reflection and transmission rates. The action of the density grating on the z component cannot be explained by the Bloch wave theory for infinite crystals, and instead a theory is developed based on four-wave mixing, which explains the transmission and reflection of the z component when interacting with a grating of finite extent.
  • loading
  • [1]
    V. M. Malkin and N. J. Fisch, “Manipulating ultraintense laser pulses in plasmas,” Phys. Plasmas 12, 044507 (2005).10.1063/1.1881533
    [2]
    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, and C. Riconda, “Plasma optics in the context of high intensity lasers,” Matter Radiat. Extremes 4, 065401 (2019).10.1063/1.5091550
    [3]
    [4]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
    [5]
    G. Lehmann and K. H. Spatschek, “Laser-driven plasma photonic crystals for high-power lasers,” Phys. Plasmas 24, 056701 (2017).10.1063/1.4977463
    [6]
    D. Turnbull, P. Michel, T. Chapman, E. Tubman, B. B. Pollock, C. Y. Chen, C. Goyon, J. S. Ross, L. Divol, N. Woolsey, and J. D. Moody, “High power dynamic polarization control using plasma photonics,” Phys. Rev. Lett. 116, 205001 (2016).10.1103/physrevlett.116.205001
    [7]
    K. Qu, Q. Jia, and N. J. Fisch, “Plasma q-plate for generation and manipulation of intense optical vortices,” Phys. Rev. E 96, 053207 (2017).10.1103/PhysRevE.96.053207
    [8]
    D. J. Stark, C. Bhattacharjee, A. V. Arefiev, T. Toncian, R. D. Hazeltine, and S. M. Mahajan, “Relativistic plasma polarizer: Impact of temperature anisotropy on relativistic transparency,” Phys. Rev. Lett. 115, 025002 (2015).10.1103/PhysRevLett.115.025002
    [9]
    D. Turnbull, C. Goyon, G. E. Kemp, B. B. Pollock, D. Mariscal, L. Divol, J. S. Ross, S. Patankar, J. D. Moody, and P. Michel, “Refractive index seen by a probe beam interacting with a laser-plasma system,” Phys. Rev. Lett. 118, 015001 (2017).10.1103/PhysRevLett.118.015001
    [10]
    G. Lehmann and K. H. Spatschek, “Plasma-based polarizer and waveplate at large laser intensity,” Phys. Rev. E 97, 063201 (2018).10.1103/PhysRevE.97.063201
    [11]
    L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).10.1038/ncomms11893
    [12]
    R. Pompili, M. P. Anania, M. Bellaveglia, A. Biagioni, S. Bini, F. Bisesto, E. Brentegani, F. Cardelli, G. Castorina, E. Chiadroni, A. Cianchi, O. Coiro, G. Costa, M. Croia, D. Di Giovenale, M. Ferrario, F. Filippi, A. Giribono, V. Lollo, A. Marocchino, M. Marongiu, V. Martinelli, A. Mostacci, D. Pellegrini, L. Piersanti, G. Di Pirro, S. Romeo, A. R. Rossi, J. Scifo, V. Shpakov, A. Stella, C. Vaccarezza, F. Villa, and A. Zigler, “Focusing of high-brightness electron beams with active-plasma lenses,” Phys. Rev. Lett. 121, 174801 (2018).10.1103/physrevlett.121.174801
    [13]
    C. A. Lindstrøm, E. Adli, G. Boyle, R. Corsini, A. E. Dyson, W. Farabolini, S. M. Hooker, M. Meisel, J. Osterhoff, J.-H. Röckemann, L. Schaper, and K. N. Sjobak, “Emittance preservation in an aberration-free active plasma lens,” Phys. Rev. Lett. 121, 194801 (2018).10.1103/PhysRevLett.121.194801
    [14]
    M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, and R. Kodama, “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314 (2010).10.1364/ol.35.002314
    [15]
    M. Zeng, A. Martinez de la Ossa, K. Poder, and J. Osterhoff, “Plasma lenses for relativistic laser beams in laser wakefield accelerators,” Phys. Plasmas 27, 023109 (2020).10.1063/1.5116416
    [16]
    I. Y. Dodin and N. J. Fisch, “Storing, retrieving, and proprocess optical information by Raman backscattering in plasmas,” Phys. Rev. Lett. 88, 165001 (2002).10.1103/physrevlett.88.165001
    [17]
    I. Y. Dodin and N. J. Fisch, “Dynamic volume holography and optical information processing by Raman scattering,” Opt. Commun. 214, 83–98 (2002).10.1016/s0030-4018(02)02144-2
    [18]
    G. Lehmann and K. H. Spatschek, “Plasma volume holograms for focusing and mode conversion of ultraintense laser pulses,” Phys. Rev. E 100, 033205 (2019).10.1103/PhysRevE.100.033205
    [19]
    M. R. Edwards, V. R. Munirov, A. Singh, N. M. Fasano, E. Kur, N. Lemos, J. M. Mikhailova, J. S. Wurtele, and P. Michel, “Holographic plasma lenses,” Phys. Rev. Lett. 128, 065003 (2022).10.1103/PhysRevLett.128.065003
    [20]
    G. Lehmann and K. H. Spatschek, “Wakefield stimulated terahertz radiation from a plasma grating,” Plasma Phys. Controlled Fusion 64, 034001 (2022).10.1088/1361-6587/ac4310
    [21]
    R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, W. H. Dunlop, J. D. Moody, D. J. Strozzi, P. A. Michel, L. Divol, O. L. Landen, B. J. MacGowan, B. M. Van Wonterghem, K. B. Fournier, and B. E. Blue, “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2017).10.1038/nphys4271
    [22]
    G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, “Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump,” Phys. Rev. Lett. 81, 4879 (1998).10.1103/physrevlett.81.4879
    [23]
    V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448–4451 (1999).10.1103/physrevlett.82.4448
    [24]
    L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, S. Weber, A. Castan, A. Chatelain, A. Frank, T. Gangolf, M. N. Quinn, J. Fuchs, and J. R. Marquès, “Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification,” Phys. Rev. Lett. 116, 075001 (2016).10.1103/PhysRevLett.116.075001
    [25]
    A. E. Hussein, J. Ludwig, K. Behm, Y. Horovitz, P.-E. Masson-Laborde, V. Chvykov, A. Maksimchuk, T. Matsuoka, C. McGuffey, V. Yanovsky, W. Rozmus, and K. Krushelnick, “Stimulated Raman backscattering from a laser wakefield accelerator,” New J. Phys. 20, 073039 (2018).10.1088/1367-2630/aaceeb
    [26]
    J.-R. Marquès, L. Lancia, T. Gangolf, M. Blecher, S. Bolanos, J. Fuchs, O. Willi, F. Amiranoff, R. L. Berger, M. Chiaramello, S. Weber, and C. Riconda, “Joule-level high-efficiency energy transfer to sub-picosecond laser pulses by a plasma-based amplifier,” Phys. Rev. X 9, 021008 (2019).10.1103/physrevx.9.021008
    [27]
    Z. Wu, Q. Chen, A. Morozov, and S. Suckewer, “Compression of laser pulses by near-forward Raman amplification in plasma,” Phys. Plasmas 27, 013104 (2020).10.1063/1.5116909
    [28]
    A. Frank, J. Fuchs, L. Lancia, G. Lehmann, J.-R. Marquès, G. Mourou, C. Riconda, K. H. Spatschek, T. Toncian, L. Vassura, S. Weber, and O. Willi, “Amplification of ultra-short light pulses by ion collective modes in plasmas,” Eur. Phys. J.: Spec. Top. 223, 1153–1156 (2014).10.1140/epjst/e2014-02167-1
    [29]
    Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673 (2003).10.1007/s00340-003-1324-2
    [30]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, and L. J. Suter, “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/PhysRevLett.102.025004
    [31]
    P. Michel, L. Divol, D. Turnbull, and J. D. Moody, “Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas,” Phys. Rev. Lett. 113, 205001 (2014).10.1103/physrevlett.113.205001
    [32]
    G. Lehmann and K. H. Spatschek, “Transient plasma photonic crystal for high-power lasers,” Phys. Rev. Lett. 116, 225002 (2016).10.1103/physrevlett.116.225002
    [33]
    H. Peng, C. Riconda, M. Grech, J. Q. Su, and S. Weber, “Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description,” Phys. Rev. E 100, 061201 (2019).10.1103/PhysRevE.100.061201
    [34]
    S. E. Schrauth, A. Colaitis, R. L. Luthi, R. C. W. Plummer, W. G. Hollingsworth, C. W. Carr, M. A. Norton, R. J. Wallace, A. V. Hamza, B. J. MacGowan, M. J. Shaw, M. L. Spaeth, K. R. Manes, P. Michel, and J.-M. Di Nicola, “Study of self-diffraction from laser generated plasma gratings in the nanosecond regime,” Phys. Plasmas 26, 073108 (2019).10.1063/1.5087734
    [35]
    H. Peng, C. Riconda, M. Grech, C.-T. Zhou, and S. Weber, “Dynamical aspects of plasma gratings driven by a static ponderomotive potential,” Plasma Phys. Controlled Fusion 62, 115015 (2020).10.1088/1361-6587/abb3aa
    [36]
    A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602 (2000).10.1103/PhysRevE.63.016602
    [37]
    H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold,” Laser Part. Beams 23, 417–421 (2005).10.1017/s0263034605050597
    [38]
    S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).10.1063/1.3157908
    [39]
    H. Y. Chen, Y. Yin, C. L. Tian, H. Xu, Y. Y. Ma, H. B. Zhuo, and F. Q. Shao, “Moving electron density gratings induced in the beat-wave field of two counterpropagating laser pulses,” Phys. Plasmas 17, 083112 (2010).10.1063/1.3480104
    [40]
    S. Hocquet, J. Néauport, and N. Bonod, “Recent progress in the development of pulse compression gratings,” EPJ Web Conf. 59, 07002 (2013).10.1051/epjconf/20135907002
    [41]
    A. Jarnac, M. Durand, A. Houard, Y. Liu, B. Prade, M. Richardson, and A. Mysyrowicz, “Spatiotemporal cleaning of a femtosecond laser pulse through interaction with counterpropagating filaments in air,” Phys. Rev. A 89, 023844 (2014).10.1103/physreva.89.023844
    [42]
    Q. Jia, I. Barth, M. R. Edwards, J. M. Mikhailova, and N. J. Fisch, “Distinguishing Raman from strongly coupled Brillouin amplification for short pulses,” Phys. Plasmas 23, 053118 (2016).10.1063/1.4951027
    [43]
    Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, and R. J. Kingham, “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121, 145002 (2018).10.1103/physrevlett.121.145002
    [44]
    G. Lehmann and K. H. Spatschek, “Plasma photonic crystal growth in the trapping regime,” Phys. Plasmas 26, 013106 (2019).10.1063/1.5079810
    [45]
    J. R. Smith, C. Orban, G. K. Ngirmang, J. T. Morrison, K. M. George, E. A. Chowdhury, and W. M. Roquemore, “Particle-in-cell simulations of density peak formation and ion heating from short pulse laser-driven ponderomotive steepening,” Phys. Plasmas 26, 123103 (2019).10.1063/1.5108811
    [46]
    H. H. Ma, S. M. Weng, P. Li, X. F. Li, Y. X. Wang, S. H. Yew, M. Chen, P. Mckenna, and Z. M. Sheng, “Growth, saturation and breaking down of laser-driven plasma density gratings,” Phys. Plasmas 27, 073105 (2020).10.1063/5.0004529
    [47]
    F. R. Morgenthaler, “Velocity modulation of electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 6, 167 (1958).10.1109/tmtt.1958.1124533
    [48]
    S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337 (1988).10.1103/physrevlett.61.337
    [49]
    J. T. Mendonça and P. K. Shukla, “Time refraction and time reflection: Two basic concepts,” Phys. Scr. 65, 160 (2002).10.1238/physica.regular.065a00160
    [50]
    K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).10.1103/PhysRevE.98.023202
    [51]
    D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120, 225001 (2018).10.1103/physrevlett.120.225001
    [52]
    H. Peng, C. Riconda, S. Weber, C. T. Zhou, and S. C. Ruan, “Frequency conversion of lasers in a dynamic plasma grating,” Phys. Rev. Appl. 15, 054053 (2021).10.1103/physrevapplied.15.054053
    [53]
    E. Kur, M. Lazarow, J. S. Wurtele, and P. Michel, “Nonlinear polarization transfer and control of two laser beams overlapping in a uniform nonlinear medium,” Opt. Express 29, 1162 (2021).10.1364/oe.413064
    [54]
    K. B. Kwon, T. Kang, H. S. Song, Y.-K. Kim, B. Ersfeld, D. A. Jaroszynski, and M. S. Hur, “High-energy, short-duration bursts of coherent terahertz radiation from an embedded plasma dipole,” Sci. Rep. 8, 145 (2018).10.1038/s41598-017-18399-3
    [55]
    A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16 (1977).10.1364/ol.1.000016
    [56]
    G. P. Gupta and B. K. Sinha, “Phase conjugation in the low reflectivity regime by nearly degenerate four-wave mixing in a homogeneous plasma,” Phys. Plasmas 5, 2252 (1998).10.1063/1.872898
    [57]
    C. Goyon, M. R. Edwards, T. Chapman, L. Divol, N. Lemos, G. J. Williams, D. A. Mariscal, D. Turnbull, A. M. Hansen, and P. Michel, “Slow and fast light in plasma using optical wave mixing,” Phys. Rev. Lett. 126, 205001 (2021).10.1103/physrevlett.126.205001
    [58]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [59]
    R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99 (1954).10.1103/physrev.93.99
    [60]
    M. Dreher, E. Takahashi, J. Meyer-ter-Vehn, and K. J. Witte, “Observation of superradiant amplification of ultrashort laser pulses in a plasma,” Phys. Rev. Lett. 93, 095001 (2004).10.1103/PhysRevLett.93.095001
    [61]
    P. Yeh, Optical Waves in Layered Media (Wiley Intersience, New York, 1988).
    [62]
    Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell equations,” Phys. Rev. Lett. 65, 2650 (1990).10.1103/physrevlett.65.2650
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (53) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return