Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wu Juefei, Yue-Chao Wang, Liu Yu, Sun Bo, Zhao Yanhong, Xian Jiawei, Gao Xingyu, Liu Haifeng, Song Haifeng. First-principles study on the electronic structure transition of β-UH3 under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058402. doi: 10.1063/5.0091969
Citation: Wu Juefei, Yue-Chao Wang, Liu Yu, Sun Bo, Zhao Yanhong, Xian Jiawei, Gao Xingyu, Liu Haifeng, Song Haifeng. First-principles study on the electronic structure transition of β-UH3 under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058402. doi: 10.1063/5.0091969

First-principles study on the electronic structure transition of β-UH3 under high pressure

doi: 10.1063/5.0091969
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: gao_xingyu@iapcm.ac.cn and song_haifeng@iapcm.ac.cn; a)Authors to whom correspondence should be addressed: gao_xingyu@iapcm.ac.cn and song_haifeng@iapcm.ac.cn
  • Received Date: 2022-03-19
  • Accepted Date: 2022-06-21
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • We investigate the electronic properties of stable β-UH3 under high pressure up to 75 GPa within the first-principles DFT + U formalism with pressure-dependent U in a self-consistent calculation, and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5f electrons. The electronic structure transition is examined from four perspectives: magnetization, band structure, density of states, and 5f electron energy. On the basis of the density of states of 5f electrons, we propose an order parameter, namely, the 5f electron energy, to quantify the electronic structure transition under pressure. Analogously to the isostructural transition in 3d systems, β-UH3 retains its magnetic order after the electronic structure transition; however, this is not accompanied by volume collapse at the transition point. Our calculation is helpful for understanding the electronic properties of β-UH3 under high pressure.
  • loading
  • [1]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
    [2]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [3]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373–377 (2020).10.1038/s41586-020-2801-z
    [4]
    I. A. Kruglov, A. G. Kvashnin, A. F. Goncharov, A. R. Oganov, S. S. Lobanov, N. Holtgrewe, S. Jiang, V. B. Prakapenka, E. Greenberg, and A. V. Yanilkin, “Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity,” Sci. Adv. 4, eaat9776 (2018).10.1126/sciadv.aat9776
    [5]
    X. Wang, M. Li, F. Zheng, and P. Zhang, “Crystal structure prediction of uranium hydrides at high pressure: A new hydrogen-rich phase,” Phys. Lett. A 382, 2959–2964 (2018).10.1016/j.physleta.2018.06.040
    [6]
    M. Liu, Y. Shi, M. Liu, D. Li, W. Mo, T. Fa, B. Bai, X. Wang, and X. Chen, “First-principles comprehensive study of electronic and mechanical properties of novel uranium hydrides at different pressures,” Prog. Nat. Sci.: Mater. Int. 30, 251–259 (2020).10.1016/j.pnsc.2020.01.019
    [7]
    P. F. Souter, G. P. Kushto, L. Andrews, and M. Neurock, “Experimental and theoretical evidence for the formation of several uranium hydride molecules,” J. Am. Chem. Soc. 119, 1682–1687 (1997).10.1021/ja9630809
    [8]
    J. Raab, R. H. Lindh, X. Wang, L. Andrews, and L. Gagliardi, “A combined experimental and theoretical study of uranium polyhydrides with new evidence for the large complex UH4(H2)6,” J. Phys. Chem. 111, 6383–6387 (2007).10.1021/jp0713007
    [9]
    D. Chung, J. Lee, D. Koo, H. Chung, K. H. Kim, H.-G. Kang, M. H. Chang, P. Camp, K. J. Jung, S. Cho, S.-H. Yun, C. S. Kim, H. Yoshida, S. Paek, and H. Lee, “Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds,” Fusion Eng. Des. 88, 2276–2279 (2013).10.1016/j.fusengdes.2013.04.004
    [10]
    A. Banos, N. J. Harker, and T. B. Scott, “A review of uranium corrosion by hydrogen and the formation of uranium hydride,” Corros. Sci. 136, 129–147 (2018).10.1016/j.corsci.2018.03.002
    [11]
    H. Yoo, W. Kim, and H. Ju, “A numerical comparison of hydrogen absorption behaviors of uranium and zirconium cobalt-based metal hydride beds,” Solid State Ionics 262, 241–247 (2014).10.1016/j.ssi.2013.10.019
    [12]
    F. D. Manchester and A. San-Martin, “The H-U (hydrogen-uranium) system,” J. Phase Equilib. 16, 263–275 (1995).10.1007/bf02667312
    [13]
    J. Bloch, “The hydriding kinetics of activated uranium powder under low (near equilibrium) hydrogen pressure,” J. Alloys Compd. 361, 130–137 (2003).10.1016/s0925-8388(03)00416-x
    [14]
    R. N. R. Mulford, F. H. Ellinger, and W. H. Zachariasen, “A new form of uranium hydride,” J. Am. Chem. Soc. 76, 297 (1954).10.1021/ja01630a094
    [15]
    C. D. Taylor, T. Lookman, and R. S. Lillard, “Ab initio calculations of the uranium–hydrogen system: Thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3,” Acta Mater. 58, 1045–1055 (2010).10.1016/j.actamat.2009.10.021
    [16]
    Y. Zhang, B. Wang, Y. Lu, Y. Yang, and P. Zhang, “Electronic, mechanical and thermodynamic properties of α-UH3: A comparative study by using the LDA and LDA+U approaches,” J. Nucl. Mater. 430, 137–141 (2012).10.1016/j.jnucmat.2012.07.002
    [17]
    I. Tkach, M. Paukov, D. Drozdenko, M. Cieslar, B. Vondráčková, Z. Matěj, D. Kriegner, A. V. Andreev, N.-T. H. Kim-Ngan, I. Turek, M. Diviš, and L. Havela, “Electronic properties of α-UH3 stabilized by Zr,” Phys. Rev. B 91, 115116 (2015).10.1103/physrevb.91.115116
    [18]
    R. Troc and W. Suski, “The discovery of the ferromagnetism in U(H, D)3: 40 years later,” J. Alloys Compd. 219, 1 (1995).10.1016/0925-8388(94)05062-7
    [19]
    J. Prchal, V. Buturlim, J. Valenta, M. Dopita, M. Divis, I. Turek, L. Kyvala, D. Legut, and L. Havela, “Pressure variations of the 5f magnetism in UH3,” J. Magn. Magn. Mater. 497, 165993 (2019).10.1016/j.jmmm.2019.165993
    [20]
    C. Zhang, H. Jiang, H.-L. Shi, G.-H. Zhong, and Y.-H. Su, “Mechanical and thermodynamic properties of α-UH3 under pressure,” J. Alloys Compd. 604, 171–174 (2014).10.1016/j.jallcom.2014.03.071
    [21]
    I. Halevy, S. Salhov, S. Zalkind, M. Brill, and I. Yaar, “High pressure study of β-UH3 crystallographic and electronic structure,” J. Alloys Compd. 370, 59–64 (2004).10.1016/j.jallcom.2003.09.124
    [22]
    C. D. Taylor, “Characterizing electronic structure motifs in β-UH3,” Phys. Rev. B 82, 224408 (2010).10.1103/physrevb.82.224408
    [23]
    H. Shi, W. Luo, B. Johansson, and R. Ahuja, “First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3,” Phys. Rev. B 78, 155119 (2008).10.1103/PhysRevB.78.155119
    [24]
    M. Núñez Valdez, I. Efthimiopoulos, M. Taran, J. Müller, E. Bykova, C. McCammon, M. Koch-Müller, and M. Wilke, “Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite,” Phys. Rev. B 97, 184405 (2018).10.1103/physrevb.97.184405
    [25]
    T. Gouder, R. Eloirdi, F. Wastin, E. Colineau, J. Rebizant, D. Kolberg, and F. Huber, “Electronic structure of UH3 thin films prepared by sputter deposition,” Phys. Rev. B 70, 235108 (2004).10.1103/physrevb.70.235108
    [26]
    G. Zwicknagl, “5f electron correlations and core level photoelectron spectra of uranium compounds,” Phys. Status Solidi B 250, 634–637 (2013).10.1002/pssb.201200732
    [27]
    L. Huang and H. Lu, “Pressure-driven 5f localized-itinerant transition and valence fluctuation in cubic phase californium,” Phys. Rev. B 99, 045109 (2019).10.1103/physrevb.99.045109
    [28]
    Y.-C. Wang and H. Jiang, “Local screened Coulomb correction approach to strongly correlated d-electron systems,” J. Chem. Phys. 150, 154116 (2019).10.1063/1.5089464
    [29]
    R. E. Rundle, “The structure of uranium hydride and deuteride,” J. Am. Chem. Soc. 69, 1719–1723 (1947).10.1021/ja01199a043
    [30]
    R. E. Rundle, “The hydrogen positions in uranium hydride by neutron diffraction,” J. Am. Chem. Soc. 73, 4172–4174 (1951).10.1021/ja01153a035
    [31]
    J. Grunzweig-Genossar, M. Kuznietz, and B. Meerovici, “Nuclear magnetic resonance in uranium hydride and deuteride,” Phys. Rev. B 1, 1958 (1970).10.1103/physrevb.1.1958
    [32]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
    [33]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin zone integrations,” Phys. Rev. B 13, 5188 (1976).10.1103/physrevb.13.5188
    [34]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
    [35]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
    [36]
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44, 943 (1991).10.1103/physrevb.44.943
    [37]
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57, 1505 (1998).10.1103/physrevb.57.1505
    [38]
    A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
    [39]
    F. Tian, D.-Y. Lin, X. Gao, Y.-F. Zhao, and H.-F. Song, “A structural modeling approach to solid solutions based on the similar atomic environment,” J. Chem. Phys. 153, 034101 (2020).10.1063/5.0014094
    [40]
    B. Dorado and P. Garcia, “First-principles DFT+U modeling of actinide-based alloys: Application to paramagnetic phases of UO2 and (U, Pu) mixed oxides,” Phys. Rev. B 87, 195139 (2013).10.1103/physrevb.87.195139
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (68) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return