Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Talantsev Evgeny F.. Universal Fermi velocity in highly compressed hydride superconductors[J]. Matter and Radiation at Extremes, 2022, 7(5): 058403. doi: 10.1063/5.0091446
Citation: Talantsev Evgeny F.. Universal Fermi velocity in highly compressed hydride superconductors[J]. Matter and Radiation at Extremes, 2022, 7(5): 058403. doi: 10.1063/5.0091446

Universal Fermi velocity in highly compressed hydride superconductors

doi: 10.1063/5.0091446
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: evgney.talantsev@imp.uran.ru
  • Received Date: 2022-03-15
  • Accepted Date: 2022-07-22
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • The Fermi velocity vF is one of the primary characteristics of any conductor, including any superconductor. For conductors at ambient pressure, several experimental techniques have been developed to measure vF, and, for instance, Zhou et al. [Nature 423 , 398 (2003)] reported that high-Tc cuprates exhibited a universal nodal Fermi velocity vF,univ=2.7±0.5×105 m/s. However, there have been no measurements of vF in highly compressed near-room-temperature superconductors (NRTS), owing to experimental challenges. Here, to answer the question of the existence of a universal Fermi velocity in NRTS materials, we analyze the full inventory of data on the ground-state upper critical field Bc2(0) for these materials and find that this class of superconductors exhibits a universal Fermi velocity vF,univ=1/1.3×2Δ0/kBTc×105 m/s, where Δ(0) is the ground-state amplitude of the energy gap. The ratio 2Δ0/kBTc varies within a narrow range 3.22Δ0/kBTc5, and so vF,univ in NRTS materials lies in the range 2.5 × 105 m/s ≤ vF,univ ≤ 3.8 × 105 m/s, which is similar to the range of values found for the high-Tc cuprate counterparts of these materials.
  • loading
  • [1]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
    [2]
    A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
    [3]
    M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [4]
    I. A. Troyan et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, 2006832 (2021).10.1002/adma.202006832
    [5]
    P. Kong et al., “Superconductivity up to 243 K in yttrium hydrides under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [6]
    [7]
    [8]
    D. V. Semenok et al., “Superconductivity at 253 K in lanthanum–yttrium ternary hydrides,” Mater. Today 48, 18–28 (2021).10.1016/j.mattod.2021.03.025
    [9]
    D. Zhou et al., “Superconducting praseodymium superhydrides,” Sci. Adv. 6, eaax6849 (2020).10.1126/sciadv.aax6849
    [10]
    T. Matsuoka et al., “Superconductivity of platinum hydride,” Phys. Rev. B 99, 144511 (2019).10.1103/physrevb.99.144511
    [11]
    F. Hong et al., “Possible superconductivity at ∼70 K in tin hydride SnHx under high pressure,” Mater. Today Phys. 22, 100596 (2022).10.1016/j.mtphys.2021.100596
    [12]
    W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, “High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 Megabar,” Phys. Rev. Lett. 127, 117001 (2021).10.1103/physrevlett.127.117001
    [13]
    M. Sakata et al., “Superconductivity of lanthanum hydride synthesized using AlH3 as a hydrogen source,” Supercond. Sci. Technol. 33, 114004 (2020).10.1088/1361-6668/abb204
    [14]
    W. Chen et al., “Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12,” Nat. Commun. 12, 273 (2021).10.1038/s41467-020-20103-5
    [15]
    M. A. Kuzovnikov and M. Tkacz, “High-pressure synthesis of novel polyhydrides of Zr and Hf with a Th4H15-type structure,” J. Phys. Chem. C 123, 30059–30066 (2019).10.1021/acs.jpcc.9b07918
    [16]
    D. V. Semenok et al., “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
    [17]
    N. N. Wang et al., “A low-Tc superconducting modification of Th4H15 synthesized under high pressure,” Supercond. Sci. Technol. 34, 034006 (2021).10.1088/1361-6668/abdcc2
    [18]
    [19]
    M. Shao et al., “Superconducting ScH3 and LuH3 at megabar pressures,” Inorg. Chem. 60, 15330 (2021).10.1021/acs.inorgchem.1c01960
    [20]
    J. Chen et al., “Computational design of novel hydrogen-rich YS–H compounds,” ACS Omega 4, 14317–14323 (2019).10.1021/acsomega.9b02094
    [21]
    J. A. Alarco, P. C. Talbot, and I. D. R. Mackinnon, “Identification of superconductivity mechanisms and prediction of new materials using density functional theory (DFT) calculations,” J. Phys.: Conf. Ser. 1143, 012028 (2018).10.1088/1742-6596/1143/1/012028
    [22]
    D. V. Semenok, A. G. Kvashnin, I. A. Kruglov, and A. R. Oganov, “Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors,” J. Phys. Chem. Lett. 9, 1920–1926 (2018).10.1021/acs.jpclett.8b00615
    [23]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).10.1146/annurev-conmatphys-031218-013413
    [24]
    J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1–78 (2020).10.1016/j.physrep.2020.02.003
    [25]
    A. Goncharov, “Phase diagram of hydrogen at extreme pressures and temperatures; updated through 2019 (Review article),” Low Temp. Phys. 46, 97 (2020).10.1063/10.0000526
    [26]
    E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-K. Mao, “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
    [27]
    B. Lilia et al., “The 2021 room-temperature superconductivity roadmap,” J. Phys.: Condens. Matter 34, 183002 (2022).10.1088/1361-648X/ac2864
    [28]
    X. Zhang, Y. Zhao, and G. Yang, “Superconducting ternary hydrides under high pressure,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1582 (2021).10.1002/wcms.1582
    [29]
    M. Dogan and M. L. Cohen, “Anomalous behaviour in high-pressure carbonaceous sulfur hydride,” Physica C 583, 1353851 (2021).10.1016/j.physc.2021.1353851
    [30]
    T. Wang et al., “Absence of conventional room temperature superconductivity at high pressure in carbon doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510
    [31]
    S. Mozaffari et al., “Superconducting phase diagram of H3S under high magnetic fields,” Nat. Commun. 10, 2522 (2019).10.1038/s41467-019-10552-y
    [32]
    V. S. Minkov, V. B. Prakapenka, E. Greenberg, and M. I. Eremets, “A boosted critical temperature of 166 K in superconducting D3S synthesized from elemental sulfur and hydrogen,” Angew. Chem., Int. Ed. 59, 18970–18974 (2020).10.1002/anie.202007091
    [33]
    R. Matsumoto et al., “Electrical transport measurements for superconducting sulfur hydrides using boron-doped diamond electrodes on beveled diamond anvil,” Supercond. Sci. Technol. 33, 124005 (2020).10.1088/1361-6668/abbdc5
    [34]
    D. Laniel et al., “Novel sulfur hydrides synthesized at extreme conditions,” Phys. Rev. B 102, 134109 (2020).10.1103/physrevb.102.134109
    [35]
    X. Huang et al., “High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility,” Natl. Sci. Rev. 6, 713–718 (2019).10.1093/nsr/nwz061
    [36]
    V. L. Ginzburg and L. D. Landau, Z. Eksp. Teor. Fiz. 20, 1064 (1950).
    [37]
    X. J. Zhou et al., “High-temperature superconductors: Universal nodal Fermi velocity,” Nature 423, 398 (2003).10.1038/423398a
    [38]
    D. K. Sunko, “High-temperature superconductors as ionic metals,” J. Supercond. Novel Magn. 33, 27–33 (2020).10.1007/s10948-019-05280-9
    [39]
    D. R. Harshman and A. T. Fiory, “High-Tc superconductivity in hydrogen clathrates mediated by Coulomb interactions between hydrogen and central-atom electrons,” J. Supercond. Novel Magn. 33, 2945–2961 (2020).10.1007/s10948-020-05557-4
    [40]
    D. R. Harshman and A. T. Fiory, “The superconducting transition temperatures of C–S–H based on inter-sublattice S–H4-tetrahedron electronic interactions,” J. Appl. Phys. 131, 015105 (2022).10.1063/5.0065317
    [41]
    Y. J. Uemura, “Bose-Einstein to BCS crossover picture for high-Tc cuprates,” Physica C 282-287, 194–197 (1997).10.1016/s0921-4534(97)00194-9
    [42]
    E. F. Talantsev, “Comparison of highly-compressed C2/m-SnH12 superhydride with conventional superconductors,” J. Phys.: Condens. Matter 33, 285601 (2021).10.1088/1361-648x/abfc18
    [43]
    E. F. Talantsev, W. P. Crump, and J. L. Tallon, “Universal scaling of the self-field critical current in superconductors: From sub-nanometre to millimetre size,” Sci. Rep. 7, 10010 (2017).10.1038/s41598-017-10226-z
    [44]
    C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, “A universal scaling relation in high-temperature superconductors,” Nature 430, 539–541 (2004).10.1038/nature02673
    [45]
    M. R. Koblischka and A. Koblischka-Veneva, “Calculation of Tc of superconducting elements with the Roeser–Huber formalism,” Metals 12, 337 (2022).10.3390/met12020337
    [46]
    M. I. Eremets, V. S. Minkov, A. P. Drozdov, P. P. Kong, V. Ksenofontov, S. I. Shylin, S. L. Bud’ko, R. Prozorov, F. F. Balakirev, D. Sun, S. Mozaffari, and L. Balicas, “High-temperature superconductivity in hydrides: Experimental evidence and details,” J. Supercond. Novel Magn. 35, 965–977 (2022).10.1007/s10948-022-06148-1
    [47]
    I. Osmond, O. Moulding, S. Cross, T. Muramatsu, A. Brooks, O. Lord, T. Fedotenko, J. Buhot, and S. Friedemann, “Clean-limit superconductivity in Im3̄m H3S synthesized from sulfur and hydrogen donor ammonia borane,” Phys. Rev. B 105, L220502 (2022).10.1103/physrevb.105.l220502
    [48]
    D. V. Semenok et al., “Effect of magnetic impurities on superconductivity in LaH10,” Adv. Mater. (published online) (2022).10.1002/adma.202204038
    [49]
    E. F. Talantsev, W. P. Crump, J. G. Storey, and J. L. Tallon, “London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor,” Ann. Phys. 529, 1600390 (2017).10.1002/andp.201600390
    [50]
    V. S. Minkov, S. L. Bud’ko, F. F. Balakirev, V. B. Prakapenka, S. Chariton, R. J. Husband, H. P. Liermann, and M. I. Eremets, “Magnetic field screening in hydrogen-rich high-temperature superconductors,” Nat. Commun. 13, 3194 (2022).10.1038/s41467-022-30782-x
    [51]
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).10.1103/physrev.108.1175
    [52]
    E. F. Talantsev, “Classifying superconductivity in compressed H3S,” Mod. Phys. Lett. B 33, 1950195 (2019).10.1142/s0217984919501951
    [53]
    I. Errea et al., “Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride,” Nature 578, 66–69 (2020).10.1038/s41586-020-1955-z
    [54]
    C. Heil, S. di Cataldo, G. B. Bachelet, and L. Boeri, “Superconductivity in sodalite-like yttrium hydride clathrates,” Phys. Rev. B 99, 220502(R) (2019).10.1103/physrevb.99.220502
    [55]
    J. A. Camargo-Martínez et al., “The higher superconducting transition temperature Tc and the functional derivative of Tc with α2F(ω) for electron–phonon superconductors,” J. Phys.: Condens. Matter 32, 505901 (2020).10.1088/1361-648x/abb741
    [56]
    C. J. Gorter and H. Casimir, “On supraconductivity I,” Physica 1, 306–320 (1934).10.1016/s0031-8914(34)90037-9
    [57]
    C. K. Jones, J. K. Hulm, and B. S. Chandrasekhar, “Upper critical field of solid solution alloys of the transition elements,” Rev. Mod. Phys. 36, 74 (1964).10.1103/revmodphys.36.74
    [58]
    L. P. Gor’kov, “The critical supercooling field in superconductivity theory,” Sov. Phys. JETP 10, 593–599 (1960).
    [59]
    T. Baumgartner, M. Eisterer, H. W. Weber, R. Flükiger, C. Scheuerlein, and L. Bottura, “Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires,” Supercond. Sci. Technol. 27, 015005 (2014).10.1088/0953-2048/27/1/015005
    [60]
    D. Sun et al., “High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride,” Nat. Commun. 12, 6863 (2021).10.1038/s41467-021-26706-w
    [61]
    E. Helfand and N. R. Werthamer, “Temperature and purity dependence of the superconducting critical field, Hc2. II,” Phys. Rev. 147, 288–294 (1966).10.1103/physrev.147.288
    [62]
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, “Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects,” Phys. Rev. 147, 295–302 (1966).10.1103/physrev.147.295
    [63]
    H. Ninomiya et al., “Superconductivity in a scandium borocarbide with a layered crystal structure,” Inorg. Chem. 58, 15629–15636 (2019).10.1021/acs.inorgchem.9b02709
    [64]
    H. Xie et al., “Superconducting zirconium polyhydrides at moderate pressures,” J. Phys. Chem. Lett. 11, 646–651 (2020).10.1021/acs.jpclett.9b03632
    [65]
    W. Zhang et al., “A new superconducting 3R-WS2 phase at high pressure,” J. Phys. Chem. Lett. 12, 3321–3327 (2021).10.1021/acs.jpclett.1c00312
    [66]
    M. Scuderi et al., “Nanoscale analysis of superconducting Fe(Se,Te) epitaxial thin films and relationship with pinning properties,” Sci. Rep. 11, 20100 (2021).10.1038/s41598-021-99574-5
    [67]
    K. Ma et al., “Group-9 transition-metal suboxides adopting the filled-Ti2Ni structure: A class of superconductors exhibiting exceptionally high upper critical fields,” Chem. Mater. 33, 8722–8732 (2021).10.1021/acs.chemmater.1c02683
    [68]
    M. Boubeche et al., “Enhanced superconductivity with possible re-appearance of charge density wave states in polycrystalline Cu1-xAgxIr2Te4 alloys,” J. Phys. Chem. Solids 163, 110539 (2022).10.1016/j.jpcs.2021.110539
    [69]
    E. F. Talantsev, “Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors,” Supercond. Sci. Technol. 33, 094009 (2020).10.1088/1361-6668/ab953f
    [70]
    E. F. Talantsev, “The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III,” J. Appl. Phys. 130, 195901 (2021).10.1063/5.0065003
    [71]
    F. Gross et al., “Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe13,” Z. Phys. B: Condens. Matter 64, 175–188 (1986).10.1007/bf01303700
    [72]
    F. Groß-Alltag, B. S. Chandrasekhar, D. Einzel, P. J. Hirschfeld, and K. Andres, “London field penetration in heavy fermion superconductors,” Z. Phys. B: Condens. Matter 82, 243–255 (1991).10.1007/BF01324334
    [73]
    E. F. Talantsev, “In-plane p-wave coherence length in iron-based superconductors,” Results Phys. 18, 103339 (2020).10.1016/j.rinp.2020.103339
    [74]
    C. B. Satterthwaite and I. L. Toepke, “Superconductivity of hydrides and deuterides of thorium,” Phys. Rev. Lett. 25, 741–743 (1970).10.1103/physrevlett.25.741
    [75]
    A. B. Migdal, “Interaction between electrons and lattice vibrations in a normal metal,” Sov. Phys. JETP 7, 996–1001 (1958).
    [76]
    G. M. Eliashberg, “Interactions between electrons and lattice vibrations in a superconductor,” Sov. Phys. JETP 11, 696–702 (1960).
    [77]
    F. Marsiglio, “Eliashberg theory: A short review,” Ann. Phys. 417, 168102 (2020).10.1016/j.aop.2020.168102
    [78]
    L. Pietronero, S. Strässler, and C. Grimaldi, “Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions,” Phys. Rev. B 52, 10516–10529 (1995).10.1103/physrevb.52.10516
    [79]
    C. Grimaldi, L. Pietronero, and S. Strässler, “Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal’s theorem,” Phys. Rev. B 52, 10530–10546 (1995).10.1103/physrevb.52.10530
    [80]
    C. Grimaldi, E. Cappelluti, and L. Pietronero, “Isotope effect on m* in high Tc materials due to the breakdown of Migdal’s theorem,” Europhys. Lett. 42, 667 (1998).10.1209/epl/i1998-00303-0
    [81]
    E. Cappelluti, S. Ciuchi, C. Grimaldi, L. Pietronero, and S. Strässler, “High Tc superconductivity in MgB2 by nonadiabatic pairing,” Phys. Rev. Lett. 88, 117003 (2002).10.1103/physrevlett.88.117003
    [82]
    L. Pietronero, L. Boeri, E. Cappelluti, and L. Ortenzi, “Conventional/unconventional superconductivity in high-pressure hydrides and beyond: Insights from theory and perspectives,” Quantum Stud.: Math. Found. 5, 5–21 (2018).10.1007/s40509-017-0128-8
    [83]
    F. Bloch, “Zum elektrischen widerstandsgesetz bei tiefen temperaturen,” Z. Phys. 59, 208–214 (1930).10.1007/bf01341426
    [84]
    F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968), pp. 185–190.
    [85]
    E. F. Talantsev, “Classifying hydrogen-rich superconductors,” Mater. Res. Express 6, 106002 (2019).10.1088/2053-1591/ab3bbb
    [86]
    E. F. Talantsev, “An approach to identifying unconventional superconductivity in highly-compressed superconductors,” Supercond. Sci. Technol. 33, 124001 (2020).10.1088/1361-6668/abb11a
    [87]
    E. F. Talantsev and R. C. Mataira, “Classifying superconductivity in ThH-ThD superhydrides/superdeuterides,” Mater. Res. Express 7, 016003 (2020).10.1088/2053-1591/ab6770
    [88]
    E. F. Talantsev, “The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor,” Supercond. Sci. Technol. 34, 034001 (2021).10.1088/1361-6668/abd28e
    [89]
    [90]
    Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, “The metallization and superconductivity of dense hydrogen sulfide,” J. Chem. Phys. 140, 174712 (2014).10.1063/1.4874158
    [91]
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
    [92]
    Z. Li et al., “Superconductivity above 200 K discovered in superhydrides of calcium,” Nat. Commun. 13, 2863 (2022); arXiv:2103.16917.10.1038/s41467-022-30454-w
    [93]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
    [94]
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463–6466 (2012).10.1073/pnas.1118168109
    [95]
    I. Goncharenko, M. I. Eremets, M. Hanfland, J. S. Tse, M. Amboage, Y. Yao, and I. A. Trojan, “Pressure-induced hydrogen-dominant metallic state in aluminum hydride,” Phys. Rev. Lett. 100, 045504 (2008).10.1103/PhysRevLett.100.045504
    [96]
    P. Hou, F. Belli, R. Bianco, and I. Errea, “Strong anharmonic and quantum effects in Pm3̄nAlH3 under high pressure: A first-principles study,” Phys. Rev. B 103, 134305 (2021).10.1103/physrevb.103.134305
    [97]
    N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748–1749 (1968).10.1103/physrevlett.21.1748
    [98]
    V. L. Ginzburg, “Superfluidity and superconductivity in the universe,” J. Stat. Phys. 1, 3–24 (1969).10.1007/bf01007238
    [99]
    J. F. Miller, R. H. Caton, and C. B. Satterthwaite, “Low-temperature heat capacity of normal and superconducting thorium hydride and thorium deuteride,” Phys. Rev. B 14, 2795 (1976).
    [100]
    [101]
    A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704–244715 (2006).10.1063/1.2210932
    [102]
    A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works—And why,” Acc. Chem. Res. 44, 227–237 (2011).10.1021/ar1001318
    [103]
    A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comput. Phys. Commun. 184, 1172–1182 (2013).10.1016/j.cpc.2012.12.009
    [104]
    T. A. Strobel, P. Ganesh, M. Somayazulu, P. R. C. Kent, and R. J. Hemley, “Novel cooperative interactions and structural ordering in H2S–H2,” Phys. Rev. Lett. 107, 255503 (2011).10.1103/physrevlett.107.255503
    [105]
    [106]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990–6995 (2017).10.1073/pnas.1704505114
    [107]
    [108]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (81) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return