Citation: | Hirsch J. E., Marsiglio F.. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401. doi: 10.1063/5.0091404 |
[1] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
|
[2] | |
[3] |
D. V. Semenok et al., “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020), and references therein.10.1016/j.cossms.2020.100808
|
[4] |
G. Gao et al., “Superconducting binary hydrides: Theoretical predictions and experimental progresses,” Mater. Today Phys. 21, 100546 (2021).10.1016/j.mtphys.2021.100546
|
[5] |
X. Zhang et al., “Pressure-induced hydride superconductors above 200 K,” Matter Radiat. Extremes 6, 068201 (2021).10.1063/5.0065287
|
[6] |
F. Marsiglio and J. Carbotte, in Superconductivity, edited by K. Bennemann and J. Ketterson (Springer, Berlin, 2008), Vol. 1, p. 73.
|
[7] |
C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57 (2020), and references therein.10.1146/annurev-conmatphys-031218-013413
|
[8] |
J. A. Flores-Livas et al., “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003
|
[9] |
B. Lilia et al., “The 2021 room-temperature superconductivity roadmap,” J. Phys.: Condens. Matter 34, 183002 (2022).10.1088/1361-648X/ac2864
|
[10] | |
[11] |
J. E. Hirsch and F. Marsiglio, “Nonstandard superconductivity or no superconductivity in hydrides under high pressure,” Phys. Rev. B 103, 134505 (2021).10.1103/physrevb.103.134505
|
[12] |
J. E. Hirsch and F. Marsiglio, “Meissner effect in nonstandard superconductors,” Physica C 587, 1353896 (2021).10.1016/j.physc.2021.1353896
|
[13] |
J. E. Hirsch and F. Marsiglio, “Absence of magnetic evidence for superconductivity in hydrides under high pressure,” Physica C 584, 1353866 (2021).10.1016/j.physc.2021.1353866
|
[14] |
J. E. Hirsch and F. Marsiglio, “Flux trapping in superconducting hydrides under high pressure,” Physica C 589, 1353916 (2021).10.1016/j.physc.2021.1353916
|
[15] |
J. E. Hirsch and F. Marsiglio, “Unusual width of the superconducting transition in a hydride,” Nature 596, E9 (2021).10.1038/s41586-021-03595-z
|
[16] |
J. E. Hirsch and F. Marsiglio, “Absence of evidence of superconductivity in sulfur hydride in optical reflectance experiments,” Nat. Phys. (to be published); arXiv:2109.10878 (2021).
|
[17] |
J. E. Hirsch, “About the pressure-induced superconducting state of europium metal at low temperatures,” Physica C 583, 1353805 (2021).10.1016/j.physc.2020.1353805
|
[18] |
J. E. Hirsch, “Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure,” Natl. Sci. Rev. 9, nwac086 (2022).10.1093/nsr/nwac086
|
[19] | |
[20] |
J. E. Hirsch, “Disconnect between published ac magnetic susceptibility of a room temperature superconductor and measured raw data,” Preprints 2021, 2021120115 (2021).10.20944/preprints202112.0115.v2
|
[21] |
J. E. Hirsch, “Comment on ‘Room-temperature superconductivity in a carbonaceous sulfur hydride’ by Elliot Snider et al.,” Europhys. Lett. 137, 36001 (2022).10.1209/0295-5075/ac50c9
|
[22] | |
[23] |
M. Dogan and M. L. Cohen, “Anomalous behavior in high-pressure carbonaceous sulfur hydride,” Physica C 583, 1353851 (2021).10.1016/j.physc.2021.1353851
|
[24] |
E. F. Talantsev, “The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor,” Supercond. Sci. Technol. 34, 034001 (2021).10.1088/1361-6668/abd28e
|
[25] | |
[26] |
T. Wang et al., “Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510
|
[27] |
M. Gubler et al., “Missing theoretical evidence for conventional room temperature superconductivity in low enthalpy structures of carbonaceous sulfur hydrides,” Phys. Rev. Mater. 6, 014801 (2022).10.1103/PhysRevMaterials.6.014801
|
[28] |
D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021).10.3390/ma14247563
|
[29] |
V. S. Minkov et al., “Magnetic field screening in hydrogen-rich high-temperature superconductors,” Nat. Commun. 13, 3194 (2022).10.1038/s41467-022-30782-x
|
[30] |
V. S. Minkov et al., “The Meissner effect in high-temperature hydrogen-rich superconductors under high pressure,” Research Square (published online, 2021).10.21203/rs.3.rs-936317/v1
|
[31] |
M. I. Eremets et al., “High-temperature superconductivity in hydrides: Experimental evidence and details,” J. Supercond. Novel Magn. 35, 965 (2022).10.1007/s10948-022-06148-1
|
[32] |
N. M. Nusran et al., “Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry,” New J. Phys. 20, 043010 (2018).10.1088/1367-2630/aab47c
|
[33] |
A. S. Sefat et al., “Superconductivity at 22 K in Co-doped BaFe2As2 crystals,” Phys. Rev. Lett. 101, 117004 (2008).10.1103/physrevlett.101.117004
|
[34] |
C. P. Bean, “Magnetization of hard superconductors,” Phys. Rev. Lett. 8, 250 (1962).10.1103/physrevlett.8.250
|
[35] |
C. P. Bean and J. D. Livingston, “Surface barrier in type-II superconductors,” Phys. Rev. Lett. 12, 14 (1964).10.1103/physrevlett.12.14
|
[36] |
A. S. Joseph and W. J. Tomasch, “Experimental evidence for delayed entry of flux into a type-II superconductor,” Phys. Rev. Lett. 12, 219 (1964).10.1103/physrevlett.12.219
|
[37] |
M. Abdel-Hafiez et al., “Determination of the lower critical field Hc1(T) in FeSe single crystals by magnetization measurements,” Physica C 503, 143 (2014).10.1016/j.physc.2014.04.018
|
[38] |
M. Naito et al., “Temperature dependence of anisotropic lower critical fields in (La1−xSrx)2CuO4,” Phys. Rev. B 41, 4823(R) (1990).10.1103/physrevb.41.4823
|
[39] |
M. Reedyk et al., “Temperature dependence of the anisotropic magnetic penetration depth and lower critical field of single-crystal Pb2Sr2(Y, CA)Cu3O8+δ,” Phys. Rev. B 44, 4539 (1991).10.1103/physrevb.44.4539
|
[40] |
I. Troyan et al., “Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering,” Science 351, 1303 (2016).10.1126/science.aac8176
|
[41] |
E. Talantsev, W. P. Crump, and J. L. Tallon, “Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents,” Ann. Phys. 529, 1700197 (2017).10.1002/andp.201700197
|
[42] |
P. Thibault et al., “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379 (2008).10.1126/science.1158573
|
[43] |
F. Capitani et al., “Spectroscopic evidence of a new energy scale for superconductivity in H3S,” Nat. Phys. 13, 859 (2017).10.1038/nphys4156
|
[44] |
X. Huang et al., “High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility,” Natl. Sci. Rev. 6, 713 (2019).10.1093/nsr/nwz061
|
[45] |
H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/revmodphys.90.015007
|
[46] |
E. F. O’Bannon III et al., “Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell,” Rev. Sci. Instrum. 89, 111501 (2018).10.1063/1.5049720
|
[47] |
K. Shimizu et al., “Superconductivity and structural studies of highly compressed hydrogen sulfide,” Physica C 552, 27 (2018).10.1016/j.physc.2018.05.011
|
[48] |
K. Shimizu, “Investigation of superconductivity in hydrogen-rich systems,” J. Phys. Soc. Jpn. 89, 051005 (2020).10.7566/jpsj.89.051005
|
[49] |
H. Nakao et al., “Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen,” J. Phys. Soc. Jpn. 88, 123701 (2019).10.7566/jpsj.88.123701
|
[50] |
R. Akashi, “Evidence of ideal superconducting sulfur superhydride in a pressure cell,” JPSJ News Comments 16, 18 (2019).10.7566/jpsjnc.16.18
|
[51] |
A. P. Malozemoff et al., “Remanent moment of high-temperature superconductors: Implications for flux-pinning and glassy models,” Phys. Rev. B 38, 6490 (1988).10.1103/physrevb.38.6490
|
[52] |
A. K. Grover et al., “Thermomagnetic history effects in niobium and its implication for Hc1 in high Tc superconductors,” Pramana 33, 297 (1989).10.1007/bf02845756
|
[53] |
K. A. Müller, M. Takashige, and J. G. Bednorz, “Flux trapping and superconductive glass state in La2CuO4−y:Ba,” Phys. Rev. Lett. 58, 1143 (1987).10.1103/physrevlett.58.1143
|
[54] | |
[55] |
E. Snider et al., “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373 (2020).10.1038/s41586-020-2801-z
|
[56] |
V. Struzhkin et al., “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736
|
[57] |
M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
|
[58] |
A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
|
[59] |
D. V. Semenok et al., “Superconductivity at 253 K in lanthanum-yttrium ternary hydrides,” Mater. Today 48, 18 (2021).10.1016/j.mattod.2021.03.025
|
[60] |
P. Kong et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
|
[61] |
J. Gutierrez et al., “First vortex entry into a perpendicularly magnetized superconducting thin film,” Phys. Rev. B 88, 184504 (2013).10.1103/physrevb.88.184504
|
[62] |
V. V. Moshchalkov et al., “Anisotropy of the first critical field and critical current in YBa2Cu3O6.9 single crystals,” Physica C 175, 407 (1991).10.1016/0921-4534(91)90616-7
|
[63] | |
[64] |