Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Hirsch J. E., Marsiglio F.. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401. doi: 10.1063/5.0091404
Citation: Hirsch J. E., Marsiglio F.. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401. doi: 10.1063/5.0091404

Clear evidence against superconductivity in hydrides under high pressure

doi: 10.1063/5.0091404
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jhirsch@ucsd.edu
  • Received Date: 2022-03-15
  • Accepted Date: 2022-06-21
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • The Meissner effect, magnetic field expulsion, is a hallmark of superconductivity. Associated with it, superconductors exclude applied magnetic fields. Recently, Minkov et al. [Nat. Commun. 13 , 3194 (2022)] presented experimental results reportedly showing “definitive evidence of the Meissner effect” in sulfur hydride and lanthanum hydride under high pressure, and Eremets et al. [J. Supercond. Nov. Magn. 35 , 965 (2022)] argued that “the arguments against superconductivity (in hydrides) can be either refuted or explained.” Instead, we show here that the evidence presented in those papers does not support the case for superconductivity in these materials. Together with experimental evidence discussed in earlier papers, we argue that this strongly suggests that hydrides under pressure are not high-temperature superconductors.
  • loading
  • [1]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
    [2]
    [3]
    D. V. Semenok et al., “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020), and references therein.10.1016/j.cossms.2020.100808
    [4]
    G. Gao et al., “Superconducting binary hydrides: Theoretical predictions and experimental progresses,” Mater. Today Phys. 21, 100546 (2021).10.1016/j.mtphys.2021.100546
    [5]
    X. Zhang et al., “Pressure-induced hydride superconductors above 200 K,” Matter Radiat. Extremes 6, 068201 (2021).10.1063/5.0065287
    [6]
    F. Marsiglio and J. Carbotte, in Superconductivity, edited by K. Bennemann and J. Ketterson (Springer, Berlin, 2008), Vol. 1, p. 73.
    [7]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57 (2020), and references therein.10.1146/annurev-conmatphys-031218-013413
    [8]
    J. A. Flores-Livas et al., “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003
    [9]
    B. Lilia et al., “The 2021 room-temperature superconductivity roadmap,” J. Phys.: Condens. Matter 34, 183002 (2022).10.1088/1361-648X/ac2864
    [10]
    [11]
    J. E. Hirsch and F. Marsiglio, “Nonstandard superconductivity or no superconductivity in hydrides under high pressure,” Phys. Rev. B 103, 134505 (2021).10.1103/physrevb.103.134505
    [12]
    J. E. Hirsch and F. Marsiglio, “Meissner effect in nonstandard superconductors,” Physica C 587, 1353896 (2021).10.1016/j.physc.2021.1353896
    [13]
    J. E. Hirsch and F. Marsiglio, “Absence of magnetic evidence for superconductivity in hydrides under high pressure,” Physica C 584, 1353866 (2021).10.1016/j.physc.2021.1353866
    [14]
    J. E. Hirsch and F. Marsiglio, “Flux trapping in superconducting hydrides under high pressure,” Physica C 589, 1353916 (2021).10.1016/j.physc.2021.1353916
    [15]
    J. E. Hirsch and F. Marsiglio, “Unusual width of the superconducting transition in a hydride,” Nature 596, E9 (2021).10.1038/s41586-021-03595-z
    [16]
    J. E. Hirsch and F. Marsiglio, “Absence of evidence of superconductivity in sulfur hydride in optical reflectance experiments,” Nat. Phys. (to be published); arXiv:2109.10878 (2021).
    [17]
    J. E. Hirsch, “About the pressure-induced superconducting state of europium metal at low temperatures,” Physica C 583, 1353805 (2021).10.1016/j.physc.2020.1353805
    [18]
    J. E. Hirsch, “Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure,” Natl. Sci. Rev. 9, nwac086 (2022).10.1093/nsr/nwac086
    [19]
    [20]
    J. E. Hirsch, “Disconnect between published ac magnetic susceptibility of a room temperature superconductor and measured raw data,” Preprints 2021, 2021120115 (2021).10.20944/preprints202112.0115.v2
    [21]
    J. E. Hirsch, “Comment on ‘Room-temperature superconductivity in a carbonaceous sulfur hydride’ by Elliot Snider et al.,” Europhys. Lett. 137, 36001 (2022).10.1209/0295-5075/ac50c9
    [22]
    [23]
    M. Dogan and M. L. Cohen, “Anomalous behavior in high-pressure carbonaceous sulfur hydride,” Physica C 583, 1353851 (2021).10.1016/j.physc.2021.1353851
    [24]
    E. F. Talantsev, “The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor,” Supercond. Sci. Technol. 34, 034001 (2021).10.1088/1361-6668/abd28e
    [25]
    [26]
    T. Wang et al., “Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510
    [27]
    M. Gubler et al., “Missing theoretical evidence for conventional room temperature superconductivity in low enthalpy structures of carbonaceous sulfur hydrides,” Phys. Rev. Mater. 6, 014801 (2022).10.1103/PhysRevMaterials.6.014801
    [28]
    D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021).10.3390/ma14247563
    [29]
    V. S. Minkov et al., “Magnetic field screening in hydrogen-rich high-temperature superconductors,” Nat. Commun. 13, 3194 (2022).10.1038/s41467-022-30782-x
    [30]
    V. S. Minkov et al., “The Meissner effect in high-temperature hydrogen-rich superconductors under high pressure,” Research Square (published online, 2021).10.21203/rs.3.rs-936317/v1
    [31]
    M. I. Eremets et al., “High-temperature superconductivity in hydrides: Experimental evidence and details,” J. Supercond. Novel Magn. 35, 965 (2022).10.1007/s10948-022-06148-1
    [32]
    N. M. Nusran et al., “Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry,” New J. Phys. 20, 043010 (2018).10.1088/1367-2630/aab47c
    [33]
    A. S. Sefat et al., “Superconductivity at 22 K in Co-doped BaFe2As2 crystals,” Phys. Rev. Lett. 101, 117004 (2008).10.1103/physrevlett.101.117004
    [34]
    C. P. Bean, “Magnetization of hard superconductors,” Phys. Rev. Lett. 8, 250 (1962).10.1103/physrevlett.8.250
    [35]
    C. P. Bean and J. D. Livingston, “Surface barrier in type-II superconductors,” Phys. Rev. Lett. 12, 14 (1964).10.1103/physrevlett.12.14
    [36]
    A. S. Joseph and W. J. Tomasch, “Experimental evidence for delayed entry of flux into a type-II superconductor,” Phys. Rev. Lett. 12, 219 (1964).10.1103/physrevlett.12.219
    [37]
    M. Abdel-Hafiez et al., “Determination of the lower critical field Hc1(T) in FeSe single crystals by magnetization measurements,” Physica C 503, 143 (2014).10.1016/j.physc.2014.04.018
    [38]
    M. Naito et al., “Temperature dependence of anisotropic lower critical fields in (La1−xSrx)2CuO4,” Phys. Rev. B 41, 4823(R) (1990).10.1103/physrevb.41.4823
    [39]
    M. Reedyk et al., “Temperature dependence of the anisotropic magnetic penetration depth and lower critical field of single-crystal Pb2Sr2(Y, CA)Cu3O8+δ,” Phys. Rev. B 44, 4539 (1991).10.1103/physrevb.44.4539
    [40]
    I. Troyan et al., “Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering,” Science 351, 1303 (2016).10.1126/science.aac8176
    [41]
    E. Talantsev, W. P. Crump, and J. L. Tallon, “Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents,” Ann. Phys. 529, 1700197 (2017).10.1002/andp.201700197
    [42]
    P. Thibault et al., “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379 (2008).10.1126/science.1158573
    [43]
    F. Capitani et al., “Spectroscopic evidence of a new energy scale for superconductivity in H3S,” Nat. Phys. 13, 859 (2017).10.1038/nphys4156
    [44]
    X. Huang et al., “High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility,” Natl. Sci. Rev. 6, 713 (2019).10.1093/nsr/nwz061
    [45]
    H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/revmodphys.90.015007
    [46]
    E. F. O’Bannon III et al., “Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell,” Rev. Sci. Instrum. 89, 111501 (2018).10.1063/1.5049720
    [47]
    K. Shimizu et al., “Superconductivity and structural studies of highly compressed hydrogen sulfide,” Physica C 552, 27 (2018).10.1016/j.physc.2018.05.011
    [48]
    K. Shimizu, “Investigation of superconductivity in hydrogen-rich systems,” J. Phys. Soc. Jpn. 89, 051005 (2020).10.7566/jpsj.89.051005
    [49]
    H. Nakao et al., “Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen,” J. Phys. Soc. Jpn. 88, 123701 (2019).10.7566/jpsj.88.123701
    [50]
    R. Akashi, “Evidence of ideal superconducting sulfur superhydride in a pressure cell,” JPSJ News Comments 16, 18 (2019).10.7566/jpsjnc.16.18
    [51]
    A. P. Malozemoff et al., “Remanent moment of high-temperature superconductors: Implications for flux-pinning and glassy models,” Phys. Rev. B 38, 6490 (1988).10.1103/physrevb.38.6490
    [52]
    A. K. Grover et al., “Thermomagnetic history effects in niobium and its implication for Hc1 in high Tc superconductors,” Pramana 33, 297 (1989).10.1007/bf02845756
    [53]
    K. A. Müller, M. Takashige, and J. G. Bednorz, “Flux trapping and superconductive glass state in La2CuO4−y:Ba,” Phys. Rev. Lett. 58, 1143 (1987).10.1103/physrevlett.58.1143
    [54]
    [55]
    E. Snider et al., “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373 (2020).10.1038/s41586-020-2801-z
    [56]
    V. Struzhkin et al., “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736
    [57]
    M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [58]
    A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [59]
    D. V. Semenok et al., “Superconductivity at 253 K in lanthanum-yttrium ternary hydrides,” Mater. Today 48, 18 (2021).10.1016/j.mattod.2021.03.025
    [60]
    P. Kong et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [61]
    J. Gutierrez et al., “First vortex entry into a perpendicularly magnetized superconducting thin film,” Phys. Rev. B 88, 184504 (2013).10.1103/physrevb.88.184504
    [62]
    V. V. Moshchalkov et al., “Anisotropy of the first critical field and critical current in YBa2Cu3O6.9 single crystals,” Physica C 175, 407 (1991).10.1016/0921-4534(91)90616-7
    [63]
    [64]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (105) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return