| Citation: | Hirsch J. E., Marsiglio F.. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401. doi: 10.1063/5.0091404 | 
	                | [1] | 
					 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964 
						
					 | 
			
| [2] | |
| [3] | 
					 D. V. Semenok et al., “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020), and references therein.10.1016/j.cossms.2020.100808 
						
					 | 
			
| [4] | 
					 G. Gao et al., “Superconducting binary hydrides: Theoretical predictions and experimental progresses,” Mater. Today Phys. 21, 100546 (2021).10.1016/j.mtphys.2021.100546 
						
					 | 
			
| [5] | 
					 X. Zhang et al., “Pressure-induced hydride superconductors above 200 K,” Matter Radiat. Extremes 6, 068201 (2021).10.1063/5.0065287 
						
					 | 
			
| [6] | 
					 F. Marsiglio and J. Carbotte, in Superconductivity, edited by K. Bennemann and J. Ketterson (Springer, Berlin, 2008), Vol. 1, p. 73. 
						
					 | 
			
| [7] | 
					 C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57 (2020), and references therein.10.1146/annurev-conmatphys-031218-013413 
						
					 | 
			
| [8] | 
					 J. A. Flores-Livas et al., “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003 
						
					 | 
			
| [9] | 
					 B. Lilia et al., “The 2021 room-temperature superconductivity roadmap,” J. Phys.: Condens. Matter 34, 183002 (2022).10.1088/1361-648X/ac2864 
						
					 | 
			
| [10] | |
| [11] | 
					 J. E. Hirsch and F. Marsiglio, “Nonstandard superconductivity or no superconductivity in hydrides under high pressure,” Phys. Rev. B 103, 134505 (2021).10.1103/physrevb.103.134505 
						
					 | 
			
| [12] | 
					 J. E. Hirsch and F. Marsiglio, “Meissner effect in nonstandard superconductors,” Physica C 587, 1353896 (2021).10.1016/j.physc.2021.1353896 
						
					 | 
			
| [13] | 
					 J. E. Hirsch and F. Marsiglio, “Absence of magnetic evidence for superconductivity in hydrides under high pressure,” Physica C 584, 1353866 (2021).10.1016/j.physc.2021.1353866 
						
					 | 
			
| [14] | 
					 J. E. Hirsch and F. Marsiglio, “Flux trapping in superconducting hydrides under high pressure,” Physica C 589, 1353916 (2021).10.1016/j.physc.2021.1353916 
						
					 | 
			
| [15] | 
					 J. E. Hirsch and F. Marsiglio, “Unusual width of the superconducting transition in a hydride,” Nature 596, E9 (2021).10.1038/s41586-021-03595-z 
						
					 | 
			
| [16] | 
					 J. E. Hirsch and F. Marsiglio, “Absence of evidence of superconductivity in sulfur hydride in optical reflectance experiments,” Nat. Phys. (to be published); arXiv:2109.10878 (2021). 
						
					 | 
			
| [17] | 
					 J. E. Hirsch, “About the pressure-induced superconducting state of europium metal at low temperatures,” Physica C 583, 1353805 (2021).10.1016/j.physc.2020.1353805 
						
					 | 
			
| [18] | 
					 J. E. Hirsch, “Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure,” Natl. Sci. Rev. 9, nwac086 (2022).10.1093/nsr/nwac086 
						
					 | 
			
| [19] | |
| [20] | 
					 J. E. Hirsch, “Disconnect between published ac magnetic susceptibility of a room temperature superconductor and measured raw data,” Preprints 2021, 2021120115 (2021).10.20944/preprints202112.0115.v2 
						
					 | 
			
| [21] | 
					 J. E. Hirsch, “Comment on ‘Room-temperature superconductivity in a carbonaceous sulfur hydride’ by Elliot Snider et al.,” Europhys. Lett. 137, 36001 (2022).10.1209/0295-5075/ac50c9 
						
					 | 
			
| [22] | |
| [23] | 
					 M. Dogan and M. L. Cohen, “Anomalous behavior in high-pressure carbonaceous sulfur hydride,” Physica C 583, 1353851 (2021).10.1016/j.physc.2021.1353851 
						
					 | 
			
| [24] | 
					 E. F. Talantsev, “The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor,” Supercond. Sci. Technol. 34, 034001 (2021).10.1088/1361-6668/abd28e 
						
					 | 
			
| [25] | |
| [26] | 
					 T. Wang et al., “Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510 
						
					 | 
			
| [27] | 
					 M. Gubler et al., “Missing theoretical evidence for conventional room temperature superconductivity in low enthalpy structures of carbonaceous sulfur hydrides,”  Phys. Rev. Mater. 6, 014801 (2022).10.1103/PhysRevMaterials.6.014801 
						
					 | 
			
| [28] | 
					 D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021).10.3390/ma14247563 
						
					 | 
			
| [29] | 
					 V. S. Minkov et al., “Magnetic field screening in hydrogen-rich high-temperature superconductors,” Nat. Commun. 13, 3194 (2022).10.1038/s41467-022-30782-x 
						
					 | 
			
| [30] | 
					 V. S. Minkov et al., “The Meissner effect in high-temperature hydrogen-rich superconductors under high pressure,” Research Square (published online, 2021).10.21203/rs.3.rs-936317/v1 
						
					 | 
			
| [31] | 
					 M. I. Eremets et al., “High-temperature superconductivity in hydrides: Experimental evidence and details,” J. Supercond. Novel Magn. 35, 965 (2022).10.1007/s10948-022-06148-1 
						
					 | 
			
| [32] | 
					 N. M. Nusran et al., “Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry,” New J. Phys. 20, 043010 (2018).10.1088/1367-2630/aab47c 
						
					 | 
			
| [33] | 
					 A. S. Sefat et al., “Superconductivity at 22 K in Co-doped BaFe2As2 crystals,” Phys. Rev. Lett. 101, 117004 (2008).10.1103/physrevlett.101.117004 
						
					 | 
			
| [34] | 
					 C. P. Bean, “Magnetization of hard superconductors,” Phys. Rev. Lett. 8, 250 (1962).10.1103/physrevlett.8.250 
						
					 | 
			
| [35] | 
					 C. P. Bean and J. D. Livingston, “Surface barrier in type-II superconductors,” Phys. Rev. Lett. 12, 14 (1964).10.1103/physrevlett.12.14 
						
					 | 
			
| [36] | 
					 A. S. Joseph and W. J. Tomasch, “Experimental evidence for delayed entry of flux into a type-II superconductor,” Phys. Rev. Lett. 12, 219 (1964).10.1103/physrevlett.12.219 
						
					 | 
			
| [37] | 
					 M. Abdel-Hafiez et al., “Determination of the lower critical field Hc1(T) in FeSe single crystals by magnetization measurements,” Physica C 503, 143 (2014).10.1016/j.physc.2014.04.018 
						
					 | 
			
| [38] | 
					 M. Naito et al., “Temperature dependence of anisotropic lower critical fields in (La1−xSrx)2CuO4,” Phys. Rev. B 41, 4823(R) (1990).10.1103/physrevb.41.4823 
						
					 | 
			
| [39] | 
					 M. Reedyk et al., “Temperature dependence of the anisotropic magnetic penetration depth and lower critical field of single-crystal Pb2Sr2(Y, CA)Cu3O8+δ,” Phys. Rev. B 44, 4539 (1991).10.1103/physrevb.44.4539 
						
					 | 
			
| [40] | 
					 I. Troyan et al., “Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering,” Science 351, 1303 (2016).10.1126/science.aac8176 
						
					 | 
			
| [41] | 
					 E. Talantsev, W. P. Crump, and J. L. Tallon, “Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents,” Ann. Phys. 529, 1700197 (2017).10.1002/andp.201700197 
						
					 | 
			
| [42] | 
					 P. Thibault et al., “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379 (2008).10.1126/science.1158573 
						
					 | 
			
| [43] | 
					 F. Capitani et al., “Spectroscopic evidence of a new energy scale for superconductivity in H3S,” Nat. Phys. 13, 859 (2017).10.1038/nphys4156 
						
					 | 
			
| [44] | 
					 X. Huang et al., “High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility,” Natl. Sci. Rev. 6, 713 (2019).10.1093/nsr/nwz061 
						
					 | 
			
| [45] | 
					 H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/revmodphys.90.015007 
						
					 | 
			
| [46] | 
					 E. F. O’Bannon III et al., “Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell,” Rev. Sci. Instrum. 89, 111501 (2018).10.1063/1.5049720 
						
					 | 
			
| [47] | 
					 K. Shimizu et al., “Superconductivity and structural studies of highly compressed hydrogen sulfide,” Physica C 552, 27 (2018).10.1016/j.physc.2018.05.011 
						
					 | 
			
| [48] | 
					 K. Shimizu, “Investigation of superconductivity in hydrogen-rich systems,” J. Phys. Soc. Jpn. 89, 051005 (2020).10.7566/jpsj.89.051005 
						
					 | 
			
| [49] | 
					 H. Nakao et al., “Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen,” J. Phys. Soc. Jpn. 88, 123701 (2019).10.7566/jpsj.88.123701 
						
					 | 
			
| [50] | 
					 R. Akashi, “Evidence of ideal superconducting sulfur superhydride in a pressure cell,” JPSJ News Comments 16, 18 (2019).10.7566/jpsjnc.16.18 
						
					 | 
			
| [51] | 
					 A. P. Malozemoff et al., “Remanent moment of high-temperature superconductors: Implications for flux-pinning and glassy models,” Phys. Rev. B 38, 6490 (1988).10.1103/physrevb.38.6490 
						
					 | 
			
| [52] | 
					 A. K. Grover et al., “Thermomagnetic history effects in niobium and its implication for Hc1 in high Tc superconductors,” Pramana 33, 297 (1989).10.1007/bf02845756 
						
					 | 
			
| [53] | 
					 K. A. Müller, M. Takashige, and J. G. Bednorz, “Flux trapping and superconductive glass state in La2CuO4−y:Ba,” Phys. Rev. Lett. 58, 1143 (1987).10.1103/physrevlett.58.1143 
						
					 | 
			
| [54] | |
| [55] | 
					 E. Snider et al., “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373 (2020).10.1038/s41586-020-2801-z 
						
					 | 
			
| [56] | 
					 V. Struzhkin et al., “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736 
						
					 | 
			
| [57] | 
					 M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001 
						
					 | 
			
| [58] | 
					 A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8 
						
					 | 
			
| [59] | 
					 D. V. Semenok et al., “Superconductivity at 253 K in lanthanum-yttrium ternary hydrides,” Mater. Today 48, 18 (2021).10.1016/j.mattod.2021.03.025 
						
					 | 
			
| [60] | 
					 P. Kong et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2 
						
					 | 
			
| [61] | 
					 J. Gutierrez et al., “First vortex entry into a perpendicularly magnetized superconducting thin film,” Phys. Rev. B 88, 184504 (2013).10.1103/physrevb.88.184504 
						
					 | 
			
| [62] | 
					 V. V. Moshchalkov et al., “Anisotropy of the first critical field and critical current in YBa2Cu3O6.9 single crystals,” Physica C 175, 407 (1991).10.1016/0921-4534(91)90616-7 
						
					 | 
			
| [63] | |
| [64] |