Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Kroupp E., Tata S., Wan Y., Levy D., Smartsev S., Levine E. Y., Seemann O., Adelberg M., Piliposian R., Queller T., Segre E., Ta Phuoc K., Kozlova M., Malka V.. Commissioning and first results from the new 2 × 100 TW laser at the WIS[J]. Matter and Radiation at Extremes, 2022, 7(4): 044401. doi: 10.1063/5.0090514
Citation: Kroupp E., Tata S., Wan Y., Levy D., Smartsev S., Levine E. Y., Seemann O., Adelberg M., Piliposian R., Queller T., Segre E., Ta Phuoc K., Kozlova M., Malka V.. Commissioning and first results from the new 2 × 100 TW laser at the WIS[J]. Matter and Radiation at Extremes, 2022, 7(4): 044401. doi: 10.1063/5.0090514

Commissioning and first results from the new 2 × 100 TW laser at the WIS

doi: 10.1063/5.0090514
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: eyal.kroupp@weizmann.ac.il
  • Received Date: 2022-03-07
  • Accepted Date: 2022-04-10
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • At the Weizmann Institute of Science, a new high-power-laser laboratory has been established that is dedicated to the fundamental aspects of laser–matter interaction in the relativistic regime and aimed at developing compact laser-plasma accelerators for delivering high-brightness beams of electrons, ions, and x rays. The HIGGINS laser system delivers two independent 100 TW beams and an additional probe beam, and this paper describes its commissioning and presents the very first results for particle and radiation beam delivery.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [2]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
    [3]
    C. G. R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
    [4]
    S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
    [5]
    H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, “Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses,” Phys. Rev. Lett. 111, 165002 (2013).10.1103/physrevlett.111.165002
    [6]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/PhysRevLett.122.084801
    [7]
    A. Pukhov and J. Meyer-ter-Vehn, “Laser wake field acceleration: The highly non-linear broken-wave regime,” Appl. Phys. B 74, 355–361 (2002).10.1007/s003400200795
    [8]
    W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.-Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
    [9]
    V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4, 447–453 (2008).10.1038/nphys966
    [10]
    B. Mahieu, N. Jourdain, K. Ta Phuoc, F. Dorchies, J.-P. Goddet, A. Lifschitz, P. Renaudin, and L. Lecherbourg, “Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
    [11]
    K. Ta Phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert, D. Boschetto, A. Rousse, D.-E. Kim, A. Pukhov, V. Seredov, and I. Kostyukov, “Demonstration of the ultrafast nature of laser produced betatron radiation,” Phys. Plasmas 14, 080701 (2007).10.1063/1.2754624
    [12]
    S. Fourmaux, S. Corde, K. T. Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, and J. C. Kieffer, “Single shot phase contrast imaging using laser-produced betatron x-ray beams,” Opt. Lett. 36, 2426–2428 (2011).10.1364/ol.36.002426
    [13]
    J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer, and S. Karsch, “Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source,” Nat. Commun. 6, 7568 (2015).10.1038/ncomms8568
    [14]
    J. M. Cole, J. C. Wood, N. C. Lopes, K. Poder, R. L. Abel, S. Alatabi, J. S. J. Bryant, A. Jin, S. Kneip, K. Mecseki, D. R. Symes, S. P. D. Mangles, and Z. Najmudin, “Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone,” Sci. Rep. 5, 13244 (2015).10.1038/srep13244
    [15]
    S. Corde, C. Thaury, K. T. Phuoc, A. Lifschitz, G. Lambert, J. Faure, O. Lundh, E. Benveniste, A. Ben-Ismail, L. Arantchuk, A. Marciniak, A. Stordeur, P. Brijesh, A. Rousse, A. Specka, and V. Malka, “Mapping the x-ray emission region in a laser-plasma accelerator,” Phys. Rev. Lett. 107, 215004 (2011).10.1103/physrevlett.107.215004
    [16]
    M. C. Downer, R. Zgadzaj, A. Debus, U. Schramm, and M. C. Kaluza, “Diagnostics for plasma-based electron accelerators,” Rev. Mod. Phys. 90, 035002 (2018).10.1103/revmodphys.90.035002
    [17]
    S. Kiselev, A. Pukhov, and I. Kostyukov, “X-ray generation in strongly nonlinear plasma waves,” Phys. Rev. Lett. 93, 135004 (2004).10.1103/physrevlett.93.135004
    [18]
    A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93, 135005 (2004).10.1103/physrevlett.93.135005
    [19]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1–48 (2013).10.1103/revmodphys.85.1
    [20]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [21]
    T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Let. 99, 185002 (2007).10.1103/physrevlett.99.185002
    [22]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
    [23]
    A. Jullien, J.-P. Rousseau, B. Mercier, L. Antonucci, O. Albert, G. Chériaux, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening,” Opt. Lett. 33, 2353–2355 (2008).10.1364/ol.33.002353
    [24]
    T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99, 7–12 (2010).10.1007/s00340-010-3916-y
    [25]
    V. A. Schanz, F. Wagner, M. Roth, and V. Bagnoud, “Noise reduction in third order cross-correlation by angle optimization of the interacting beams,” Opt. Express 25, 9252–9261 (2017).10.1364/oe.25.009252
    [26]
    T. Kurz, J. P. Couperus, J. M. Krämer, H. Ding, S. Kuschel, A. Köhler, O. Zarini, D. Hollatz, D. Schinkel, R. D’Arcy, J.-P. Schwinkendorf, J. Osterhoff, A. Irman, U. Schramm, and S. Karsch, “Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination,” Rev. Sci. Instrum. 89, 093303 (2018).10.1063/1.5041755
    [27]
    P. A. Ross, “Minutes of the Oakland meeting, June 17, 1926,” Phys. Rev. 28, 425–430 (1926).10.1103/PhysRev.28.425
    [28]
    P. A. Ross, “A new method of spectroscopy for faint x-radiations,” J. Opt. Soc. Am. 16, 433–437 (1928).10.1364/josa.16.000433
    [29]
    J. Metzkes, K. Zeil, S. D. Kraft, L. Karsch, M. Sobiella, M. Rehwald, L. Obst, H.-P. Schlenvoigt, and U. Schramm, “An online, energy-resolving beam profile detector for laser-driven proton beams,” Rev. Sci. Instrum. 87, 083310 (2016).10.1063/1.4961576
    [30]
    N. P. Dover, M. Nishiuchi, H. Sakaki, M. A. Alkhimova, A. Y. Faenov, Y. Fukuda, H. Kiriyama, A. Kon, K. Kondo, K. Nishitani, K. Ogura, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, M. Kando, and K. Kondo, “Scintillator-based transverse proton beam profiler for laser-plasma ion sources,” Rev. Sci. Instrum. 88, 073304 (2017).10.1063/1.4994732
    [31]
    K. Zeil, S. D. Kraft, S. Bock, M. Bussmann, T. E. Cowan, T. Kluge, J. Metzkes, T. Richter, R. Sauerbrey, and U. Schramm, “The scaling of proton energies in ultrashort pulse laser plasma acceleration,” New J. Phys. 12, 045015 (2010).10.1088/1367-2630/12/4/045015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (347) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return