Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Pei Cuiying, Ying Tianping, Zhao Yi, Gao Lingling, Cao Weizheng, Li Changhua, Hosono Hideo, Qi Yanpeng. Pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16 with cage structures[J]. Matter and Radiation at Extremes, 2022, 7(3): 038404. doi: 10.1063/5.0088235
Citation: Pei Cuiying, Ying Tianping, Zhao Yi, Gao Lingling, Cao Weizheng, Li Changhua, Hosono Hideo, Qi Yanpeng. Pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16 with cage structures[J]. Matter and Radiation at Extremes, 2022, 7(3): 038404. doi: 10.1063/5.0088235

Pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16 with cage structures

doi: 10.1063/5.0088235
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: ying@iphy.ac.cn and qiyp@shanghaitech.edu.cn; a)Authors to whom correspondence should be addressed: ying@iphy.ac.cn and qiyp@shanghaitech.edu.cn
  • Received Date: 2022-02-14
  • Accepted Date: 2022-04-14
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • Clathrate-like or caged compounds have attracted great interest owing to their structural flexibility, as well as their fertile physical properties. Here, we report the pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16, two new caged superconductors with two-dimensional building blocks of cage structures. After suppression of the ambient-pressure superconducting (SC-I) states, new superconducting (SC-II) states emerge unexpectedly, with Tc increased to a maximum of 4.4 and 4.0 K for BaIr2Ge7 and Ba3Ir4Ge16, respectively. Combined with high-pressure synchrotron x-ray diffraction and Raman measurements, we propose that the reemergence of superconductivity in these caged superconductors can be ascribed to a pressure-induced phonon softening linked to cage shrinkage.
  • loading
  • [1]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569(7757), 528 (2019).10.1038/s41586-019-1201-8
    [2]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122(2), 027001 (2019).10.1103/PhysRevLett.122.027001
    [3]
    F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, “Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures,” Chin. Phys. Lett. 37(10), 107401 (2020).10.1088/0256-307x/37/10/107401
    [4]
    X. Zhang, Y. Zhao, F. Li, and G. Yang, “Pressure-induced hydride superconductors above 200 K,” Matter Radiat. Extremes 6(6), 068201 (2021).10.1063/5.0065287
    [5]
    V. Struzhkin, B. Li, C. Ji, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5(2), 028201 (2020).10.1063/1.5128736
    [6]
    D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021); arXiv:2112.09862.10.3390/ma14247563
    [7]
    J. Lv, Y. Sun, H. Liu, and Y. Ma, “Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure,” Matter Radiat. Extremes 5(6), 068101 (2020).10.1063/5.0033232
    [8]
    J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1–78 (2020).10.1016/j.physrep.2020.02.003
    [9]
    D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24(2), 100808 (2020).10.1016/j.cossms.2020.100808
    [10]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12(1), 5075 (2021).10.1038/s41467-021-25372-2
    [11]
    I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33(15), 2006832 (2021).10.1002/adma.202006832
    [12]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, “Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures,” Phys. Rev. Lett. 126(11), 117003 (2021).10.1103/physrevlett.126.117003
    [13]
    D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
    [14]
    X. Li, X. Huang, D. Duan, C. J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y. Huang, Q. Zhou, B. Liu, and T. Cui, “Polyhydride CeH9 with an atomic-like hydrogen clathrate structure,” Nat. Commun. 10(1), 3461 (2019).10.1038/s41467-019-11330-6
    [15]
    N. P. Salke, M. M. Davari Esfahani, Y. Zhang, I. A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V. B. Prakapenka, J. Liu, A. R. Oganov, and J.-F. Lin, “Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10(1), 4453 (2019).10.1038/s41467-019-12326-y
    [16]
    W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, “High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 Megabar,” Phys. Rev. Lett. 127(11), 117001 (2021).10.1103/physrevlett.127.117001
    [17]
    D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin, K. V. Glazyrin, N. Giordano, D. N. Karimov, A. L. Vasiliev, R. Akashi, V. M. Pudalov, and A. R. Oganov, “Superconductivity at 253 K in lanthanum–yttrium ternary hydrides,” Mater. Today 48, 18–28 (2021).10.1016/j.mattod.2021.03.025
    [18]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114(27), 6990–6995 (2017).10.1073/pnas.1704505114
    [19]
    [20]
    Y. Qi, H. Lei, J. Guo, W. Shi, B. Yan, C. Felser, and H. Hosono, “Superconductivity in alkaline earth metal-filled skutterudites BaxIr4X12 (X = As, P),” J. Am. Chem. Soc. 139(24), 8106–8109 (2017).10.1021/jacs.7b04274
    [21]
    O. Gunnarson, “Superconductivity in fullerides,” Rev. Mod. Phys. 69(2), 575 (1997).10.1103/RevModPhys.69.575
    [22]
    M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri, “Possible light-induced superconductivity in K3C60 at high temperature,” Nature 530(7591), 461–464 (2016).10.1038/nature16522
    [23]
    J. Guo, J.-i. Yamaura, H. Lei, S. Matsuishi, Y. Qi, and H. Hosono, “Superconductivity in Ban+2Ir4nGe12n+4 (n = 1, 2) with cage structure and softening of low-lying localized mode,” Phys. Rev. B 88(14), 140507(R) (2013).10.1103/physrevb.88.140507
    [24]
    S. Ishida, Y. Yanagi, K. Oka, K. Kataoka, H. Fujihisa, H. Kito, Y. Yoshida, A. Iyo, I. Hase, Y. Gotoh, and H. Eisaki, “Crystal structure and superconductivity of BaIr2Ge7 and Ba3Ir4Ge16 with two-dimensional Ba-Ge networks,” J. Am. Chem. Soc. 136(14), 5245–5248 (2014).10.1021/ja5011527
    [25]
    H. Duong Nguyen, Y. Prots, W. Schnelle, B. Böhme, M. Baitinger, S. Paschen, and Y. Grin, “Preparation, crystal structure and physical properties of the superconducting cage compound Ba3Ge16Ir4,” Z. Anorg. Allg. Chem. 640(5), 760–767 (2014).10.1002/zaac.201300599
    [26]
    Y. Zhao, J. Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, L. Gao, W. Cao, C. Li, C. Pei, T. Ying, H. Hosono, and Y. Qi, “Superconductivity in the layered cage compound Ba3Rh4Ge16,” Chin. Phys. Lett. 38(12), 127402 (2021).10.1088/0256-307x/38/12/127402
    [27]
    C. Pei, T. Ying, Q. Zhang, X. Wu, T. Yu, Y. Zhao, L. Gao, C. Li, W. Cao, Q. Zhang, A. P. Schnyder, L. Gu, X. Chen, H. Hosono, and Y. Qi, “Caging-pnictogen-induced superconductivity in skutterudites IrX3 (X = As, P),” J. Am. Chem. Soc. 144, 6208 (2022).10.1021/jacs.1c09244
    [28]
    C. Pei, S. Jin, P. Huang, A. Vymazalova, L. Gao, Y. Zhao, W. Cao, C. Li, P. Nemes-Incze, Y. Chen, H. Liu, G. Li, and Y. Qi, “Pressure-induced superconductivity and structure phase transition in Pt2HgSe3,” Npj Quantum Mater. 6, 98 (2021).10.1038/s41535-021-00402-w
    [29]
    C. Pei, W. Shi, Y. Zhao, L. Gao, J. Gao, Y. Li, H. Zhu, Q. Zhang, N. Yu, C. Li, W. Cao, S. A. Medvedev, C. Felser, B. Yan, Z. Liu, Y. Chen, Z. Wang, and Y. Qi, “Pressure-induced a partial disorder and superconductivity in quasi-one-dimensional Weyl semimetal (NbSe4)2I,” Mater. Today Phys. 21, 100509 (2021).10.1016/j.mtphys.2021.100509
    [30]
    Q. Wang, P. Kong, W. Shi, C. Pei, C. Wen, L. Gao, Y. Zhao, Q. Yin, Y. Wu, G. Li, H. Lei, J. Li, Y. Chen, S. Yan, and Y. Qi, “Charge density wave orders and enhanced superconductivity under pressure in the kagome metal CsV3Sb5,” Adv. Mater. 33, 2102813 (2021).10.1002/adma.202102813
    [31]
    C. Pei, Y. Xia, J. Wu, Y. Zhao, L. Gao, T. Ying, B. Gao, N. Li, W. Yang, D. Zhang, H. Gou, Y. Chen, H. Hosono, G. Li, and Y. Qi, “Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator,” Chin. Phys. Lett. 37(6), 066401 (2020).10.1088/0256-307x/37/6/066401
    [32]
    C. Pei and L. Wang, “Recent progress on high-pressure and high-temperature studies of fullerenes and related materials,” Matter Radiat. Extremes 4(2), 028201 (2019).10.1063/1.5086310
    [33]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673–4676, (1986).10.1029/jb091ib05p04673
    [34]
    A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Pressure Res. 14(4–6), 235 (1996).10.1080/08957959608201408
    [35]
    [36]
    B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34(2), 210 (2001).10.1107/s0021889801002242
    [37]
    L. Sun, X.-J. Chen, J. Guo, P. Gao, Q.-Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, K. Yang, A. Li, X. Dai, H.-k. Mao, and Z. Zhao, “Re-emerging superconductivity at 48 kelvin in iron chalcogenides,” Nature 483(7387), 67–69 (2012).10.1038/nature10813
    [38]
    J. P. Sun, P. Shahi, H. X. Zhou, Y. L. Huang, K. Y. Chen, B. S. Wang, S. L. Ni, N. N. Li, K. Zhang, W. G. Yang, Y. Uwatoko, G. Xing, J. Sun, D. J. Singh, K. Jin, F. Zhou, G. M. Zhang, X. L. Dong, Z. X. Zhao, and J.-G. Cheng, “Reemergence of high-Tc superconductivity in the (Li1−xFex)OHFe1−ySe under high pressure,” Nat. Commun. 9(1), 380 (2018).10.1038/s41467-018-02843-7
    [39]
    C. Huang, J. Guo, K. Zhao, F. Cui, S. Qin, Q. Mu, Y. Zhou, S. Cai, C. Yang, S. Long, K. Yang, A. Li, Q. Wu, Z. Ren, J. Hu, and L. Sun, “Reemergence of superconductivity in pressurized quasi-one-dimensional superconductor K2Mo3As3,” Phys. Rev. Mater. 5(2), L021801 (2021).10.1103/physrevmaterials.5.l021801
    [40]
    Y. Zhou, X. Chen, R. Zhang, J. Shao, X. Wang, C. An, Y. Zhou, C. Park, W. Tong, L. Pi, Z. Yang, C. Zhang, and Y. Zhang, “Pressure-induced reemergence of superconductivity in topological insulator Sr0.065Bi2Se3,” Phys. Rev. B 93(14), 144514 (2016).10.1103/physrevb.93.144514
    [41]
    [42]
    X. Chen, X. Zhan, X. Wang, J. Deng, X.-B. Liu, X. Chen, J.-G. Guo, and X. Chen, “Highly robust reentrant superconductivity in CsV3Sb5 under pressure,” Chin. Phys. Lett. 38(5), 057402 (2021).10.1088/0256-307x/38/5/057402
    [43]
    Z. Zhang, Z. Chen, Y. Zhou, Y. Yuan, S. Wang, J. Wang, H. Yang, C. An, L. Zhang, X. Zhu, Y. Zhou, X. Chen, J. Zhou, and Z. Yang, “Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5,” Phys. Rev. B 103(22), 224513 (2021).10.1103/physrevb.103.224513
    [44]
    C. K. Jones, J. K. Hulm, and B. S. Chandrasekhar, “Upper critical field of solid solution alloys of the transition elements,” Rev. Mod. Phys. 36(1), 74–76 (1964).10.1103/revmodphys.36.74
    [45]
    J. A. Woollam, R. B. Somoano, and P. O’Connor, “Positive curvature of the Hc2-versus-Tc boundaries in layered superconductors,” Phys. Rev. Lett. 32(13), 712–714 (1974).10.1103/physrevlett.32.712
    [46]
    F. Birch, “Finite elastic strain of cubic crystals,” Phys. Rev. 71(11), 809–824 (1947).10.1103/physrev.71.809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (513) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return